
Taming the many EdDSAs

Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko

Novi/Facebook
kostascrypto@fb.com, fga@fb.com, valerini@fb.com

Abstract. This paper analyses security of concrete instantiations of
EdDSA by identifying exploitable inconsistencies between standardiza-
tion recommendations and Ed25519 implementations. We mainly focus
on current ambiguity regarding signature verification equations, binding
and malleability guarantees, and incompatibilities between randomized
batch and single verification. We give a formulation of Ed25519 signature
scheme that achieves the highest level of security, explaining how each step
of the algorithm links with the formal security properties. We develop op-
timizations to allow for more efficient secure implementations. Finally, we
designed a set of edge-case test-vectors and run them by some of the most
popular Ed25519 libraries. The results allowed to understand the security
level of those implementations and showed that most libraries do not com-
ply with the latest standardization recommendations. The methodology
allows to test compatibility of different Ed25519 implementations which
is of practical importance for consensus-driven applications.

Keywords: EdDSA · ed25519 · malleability · blockchain · cofactor

1 Introduction

The Edwards-Curve Digital Signature Algorithm (EdDSA) [5] is a deterministic
Schnorr signature [36] variant using twisted Edwards curves rather than Weier-
strass curves, at a significant performance gain. As of today, Ed25519 is the most
popular instance of EdDSA and is based on the Edwards Curve25519 providing
∼ 128-bits of security.

Due to its superior efficiency among Elliptic Curve schemes and better security
guarantees against side-channel attacks under weak randomness sources, Ed25519
is widely adopted by such protocols as TLS 1.3, SSH, Tor, GnuPGP, Signal and
more [16]. It is also the preferred signature scheme of several blockchain systems,
such as Corda [14], Tezos [12], Stellar [3], and Libra [20].

Seeking to reap more performance and security benefits, some applications even
rely on properties of Ed25519 beyond the usual staple of digital signature algo-
rithms. Those “extras” include for instance fast batch verification, non-repudiation,
strong unforgeability and correctness consistency. Serving these demands with

— at first — little specification guidance, libraries implementing Ed25519 have
introduced tweaks to the original scheme that we will explore in depth. Today,
the wide adoption of Ed25519 heightens concerns about backwards-compatibility,

2 Chalkias K., Garillot F. and Nikolaenko V.

while clarity on the exact security guarantees of close variants of EdDSA has
progressed but recently [8]. It is therefore no wonder that we have observed no
agreement on the exact set of correct signatures between different implementa-
tions.

Nonetheless, two standardization efforts for Ed25519 have made attempts at
such an agreement, one from IETF, RFC 8032 [18] (active since 2015 and still
sees modifications) and a recent one from NIST as part of FIPS 186–5 [32]
(published as a draft in October 2019). Although these efforts are similar, one of
the most divisive topics relating to EdDSA standardization is the discrepancy in
correctness definitions, i.e. in the verification equations, between standards and
software libraries. Specifically, RFC 8032 [18] allows optionality between using
a permissive verification equation (cofactored) and a more strict verification
equation (cofactorless)1.

For base point B, public key A and signature (R, S), RFC 8032 states:

Check the group equation [8][S]B = [8]R + [8][k]A. It’s sufficient, but
not required, to instead check [S]B = R + [k]A.

By contrast, NIST’s draft [32] allows no such optionality and only suggests a
more permissive (cofactored) verification equation. This comes in contradiction
to the choice of almost all software libraries, which use the more strict verification
equation (cofactorless), most likely for performance reasons.

Beyond the discrepancies that do occur in EdDSA standards, we also note consid-
erations they neglect. For instance, none of the standards formulate the scheme
in a way that offers non-repudiation, or resilience to key substitution attacks (see
Appendix A for an example). This choice makes it difficult to use the scheme for
such applications as

Contract Signing: if company A signed an agreement with company B using a
key that allows for repudiation, it can later claim that it signed a completely
different deal.

Electronic Voting: malicious voters may pick special keys that allow for repu-
diation on purpose in order to create friction in the process and deny results,
as their signed vote might be verified against multiple candidates.

Transactions: a blockchain transaction of amount X might also be valid for
another amount Y, creating potential problems for consensus and dispute
resolution.

Finally, we highlight that the application domain of Ed25519 has changed over
the years. For instance, Blockchain technology is a booming field, which gained
hundreds of billions of US dollars in market capitalization in the time since the
publication of the original EdDSA paper [4]. It features cryptographic signatures
1 Cofactored means interpreting the verification equation modulo 8, which is a cofactor

of the Curve25519. Any signature accepted by a “cofactorless” equation will be
accepted by a “cofactored” equation, though the converse is false.

Taming the many EdDSAs 3

pervasively, and places a premium on performance. Yet, being strongly reliant
on Byzantine consensus algorithms, blockchains are vulnerable to any disagree-
ment on the validity of signatures between different implementations: a sequence
of carefully crafted signatures exploiting such a disagreement could slow most
consensus algorithms to a crawl.

Moreover, the adversarial ecosystem exploiting cryptographic flaws in blockchains
is now well-developed, and the stakes of even minor flaws of cryptographic schemes
have become consequential [9, 15].

In order to stem the rapidly rising costs of the conflicting approaches to Ed25519,
we hope standardization bodies will lead the way for Ed25519 developers and
equip them with the guidance necessary to produce high assurance libraries that
conform with each other. Specifically, the cryptographic community at large
would benefit if standards offered a set of more precise recommendations and test
vectors that check for all the difficult edge cases left open by the mathematics of
EdDSA. We offer a first incarnation of those elements here.

Note that although this research paper focuses on Ed25519, the same methods
apply to Ed448 and potentially to other non-prime order curves as well.

Our contributions. In this paper, we give a precise formulation of Ed25519
signature scheme that achieves the highest level of security —– strong unforge-
ability and resilience to repudiation —– with a minimal number of additional
inexpensive checks, and we explain why each of these checks is required. In doing
so, we precisely link those checks with the formal security properties usually
considered in the establishment of a signature standard, but incorporate more
modern considerations as well, such as compatibility with EdDSA’s batch verifi-
cation. To make it easy for both the standards and the libraries to add the checks
we recommend, we equip the reader with specific procedures that perform them
optimally. This single scheme relieves developers from the burden of making
distinct choices based on their intended applications, and so it is our hope that it
can help the Ed25519 ecosystem to converge to a single interoperable scheme, one
compatible with the degree of determinism required by blockchain applications.
But even if a standard body was to disagree on some of our approach, we expect
that our systematic analysis will offer practical tools for crafting better Ed25519
implementations: for instance we highlight that beyond their differences on the
style of verification equation, neither standards nor software libraries offer non-
repudiation. We explain how to add non-repudiation via an inexpensive check
on the public key.

We also provide test vectors that help surface the differences between imple-
mentation choices as well as find common blunders in the wild. We run the
test vectors against most of the popular cryptographic libraries, and from the
results we deduce which libraries offer strong unforgeability, which guarantee
non-repudiation and which of them do cofactored verification. We carefully ex-
plain the methodology, making it easy to analyze other libraries in the same
way. The test vectors can be used for blockchain applications to make sure the

4 Chalkias K., Garillot F. and Nikolaenko V.

participants agree on acceptance/rejection of those vectors, which should give
high assurance in that the participants would agree on the validity of all possible
signatures.

Outline. In Section 2.1 we explain various security and malleability notions for a
signature scheme, in Section 2.2 we show the stakes of precise correctness defini-
tions (as surfaced recently in consensus-driven applications). We start Section 3
recalling the structure of the Curve25519 group, including the structure of the
small-order subgroup, and we point out caveats regarding the checks for non-
canonical encodings, before detailing the Ed25519 key and signature generation
algorithms. In Section 3.1 we formulate a single signature verification algorithm
that achieves the strongest notion of security. We explain each line of the algo-
rithm in detail and eliminate ambigious implementation choices. In Section 3.2
we formulate batch verification algorithm. We explain why only cofactored form
of single signature verification is compatible with batch verification. In Section 4
we explain how to optimize the verification algorithm, especially the additional
checks. In Section 5 we provide the test vectors and analyse the existing libraries
using those vectors. Related work is given in Section 6.

2 Background

2.1 Signatures security

There are four security properties relevant to EdDSA which we sketch at a high
level here (the exact game-based definitions can be found in, e.g., Brendel et
al. [8]).

EUF-CMA (existential unforgeability under chosen message attacks)
is usually the minimal security property required of a signature scheme. It guar-
antees that any efficient adversary who has the public key pk of the signer and
received an arbitrary number of signatures on messages of its choice (in an
adaptive manner): {mi, σi}N

i=1, cannot output a valid signature σ∗ for a new
message m∗ /∈ {mi}N

i=1 (except with negligible probability). In case the attacker
outputs a valid signature on a new message: (m∗, σ∗), it is called an existential
forgery.

SUF-CMA (strong unforgeability under chosen message attacks) is a
stronger notion than EUF-CMA. It guarantees that for any efficient adversary
who has the public key pk of the signer and received an arbitrary number of
signatures on messages of its choice: {mi, σi}N

i=1, it cannot output a new valid
signature pair (m∗, σ∗), s.t. (m∗, σ∗) /∈ {mi, σi}N

i=1 (except with negligible prob-
ability).

Strong unforgeability implies that an adversary cannot only sign new messages,
but also cannot find a new signature on an old message. Strongly unforgeable
signatures are used to build chosen ciphertext secure encryption schemes and
group signatures [7]. This property is highly desirable for blockchain applications,

Taming the many EdDSAs 5

e.g. ECDSA signatures in Bitcoin are not strongly unforgeable, and multiple
attempts to fix the problem [23,39] only ended with a soft fork fixing the signature
serialization format [40]. As was shown in [8], additional checks in the verification
procedure makes Ed25519 signature scheme satisfy SUF-CMA.

Binding signature (BS) We say that a signature scheme is binding if no
efficient signer can output a tuple [pk, m, m′, σ], where both (m, σ) and (m′, σ)
are valid message signature pairs under the public key pk and m ̸= m′ (except
with negligible probability).

A binding signature makes it impossible for the signer to claim later [to a judge]
that it has signed a different message, the signature binds the signer to the
message. If the signer is able to produce another message for which the same
signature is valid, we say that the signer repudiates or breaks the non-repudiation
property of the signature scheme (see [41]).

Strongly Binding signature (SBS) Certain applications may require a signa-
ture to not only be binding to the message but also be binding to the public key.
We say that a signature scheme is strongly-binding if any efficient signer can not
output a tuple [pk, m, pk′, m′, σ], where (m, σ) is a valid signature for the public
key pk and (m′, σ) is a valid signature for the public key pk′ and either m′ ≠ m
or pk ̸= pk′, or both (except with negligible probability).

As was shown in [8] certain variants of EdDSA (in particular, the one described in
the RFC8032 [18]) are not binding — there are special types of public keys that
allow the signer to repudiate. Rejecting those keys makes the ed25519 scheme
strongly binding which we prove in Section 3.1. We define the SBS security
as follows (this notion is equivalent to the combination of M-S-UEO and MBS
from [8])

Definition 1. A signature scheme with verification algorithm Verify is strongly
binding (SBS-secure) if for any probablistic polynomial time algorithm A the
following probability is negligible:

Pr
[(m ̸= m′ ∨ pk ̸= pk′)

∧
Verify(pk, σ, m)

∧
Verify(pk′, σ, m′)

∣∣∣∣∣ (pk, pk′, σ, m, m′) $←− A()
]

< negl.

Malleable signature: Signature malleability gets different meanings in different
contexts, in this writing we say that the signature is malleable if it is either
not strongly unforgeable or it is not strongly binding, or both. In other words,
we will call the signature scheme malleable if it does not satisfy the strongest
notion of security. Note that only the signature security property (EUF-CMA)
is necessary for any deployment of a signature scheme, the absence of the rest
of the properties might not necessarily weaken the security of the application,

6 Chalkias K., Garillot F. and Nikolaenko V.

but we advocate for any modern standard to design schemes with the highest
security guarantees.2

To see why these definitions cover all the possibilities for attacks, we recall in
Fig. 1 different capabilities for the signer and for the external (public) attacker
to alter parts of the public key, message, signature triplet.

pk′, m′, σ′ pk, m, σ pk, m, σ′

pk′, m′, σ pk, m, σ pk, m′, σ

pk′, m, σ′ pk′, m, σ pk, m′, σ′

8 1 2

7 3

6 5 4

(a) Signature transformations
We assume pk ̸= pk′, m ̸= m′ and σ ̸= σ′.

Alteration
to

(pk, m, σ)
triplet

Security property
preventing the
alteration by a

(possibly malicious)
Fig 1a signer public attacker

5 SBS SBS
3 BS EUF-CMA
2 uniqueness ∗ SUF-CMA
4 N/A EUF-CMA
7 SBS SBS

6,8 N/A N/A

(b) Here N/A means that an alteration of this
type is expected from the signature scheme and does
not concern us in this writing. Note (∗) that the
EdDSA signatures are deterministic but not unique,
i.e. a dishonest signer can always produce multiple
signatures for the same message.

Fig. 1: Different ways of altering signatures

Often, a signature scheme is proven to be secure at a certain level, but the
specific implementations may degrade the security level because of inappropriate
padding, ambiguous serialization or non-unique encoding.

In Section 3 we state the variant of Ed25519 that is strongly-unforgeable and
strongly-binding. We also highlight multiple caveats for implementing the Ed25519
signature scheme securely.

2.2 Correctness of cryptographic signatures

Increasing number of applications are in need of unambigious description for the
set of valid signatures. It is most important for consensus-driven protocols, where
participants need to agree beforehand on the exact format of a valid signature.
An adversary may create a malformed signature such that half of the participants
will accept it as valid and half will not thus create issues for consensus decisions
on whether the signature is valid or not, potentially slowing down applications.
In particular, nearly all consensus mechanisms rely on a 2/3 majority of (honest)
nodes reaching the same accept or reject decision on a particular value for liveness.
Imagine two signatures σ1 and σ2, where half of the parties accept the first, but
2 Note that a malicious signer can always bypass the correct signing execution by

picking a random R and thus output two different signatures for the same message.
Thus, EdDSA cannot guarantee the signature-uniqueness property.

Taming the many EdDSAs 7

reject the second and the other half on the contrary accept the second, but reject
the first, the consensus might come to a halt.

We observe the discrepancy between the verification equations in the standards
(IETF and NIST) and almost all the cryptographic libraries. We present test
vectors that surface the exact nature of these discrepancies in Section 5.

3 Ed25519 signatures

The signature scheme is defined over the elliptic curve group

E = {(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2}

where d = −121665/121666 ∈ Fq and q = 2255 − 19. The neutral element of the
group is 0 = (0, 1), the complete twisted Edwards addition law is:

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1

1 + dx1x2y1y2
,

y1y2 + x1x2

1 − dx1x2y1y2

)
.

The number of points on the elliptic curve is |E| = 8 × L, where L = 2252 +
27742317777372353535851937790883648493 is prime. The base point B, specified
in the RFC (Section 5.1 [18]), has order L. It has been chosen to be the point with
the smallest u coordinate in Montgomery representation (u = 9, see Appendix
A, in [19]).

Note that the presence of the co-factor of 8 in the curve-order makes it harder
to use this curve in applications where a prime-order group is required for the
cryptographic proof. For example in [22], an adversary may send a key exchange
group element that lies in a small subgroup of order 8 instead of the correct
subgroup and use the honest user’s response to deduce some bits of this user’s
secret exponent.

Algorithm 1 Ed25519 Algorithm: Key Generation and Signature Generation

Key Generation
1: Sample uniformly random sk ∈ {0, 1}256.
2: Expand the secret with a hash function: (h0, h1, . . . , h511)← SHA512(sk).
3: Compute a secret scalar s = 2254 + h253 · 2253 + · · ·+ h3 · 23 3.
4: Compute the public key pk = A, where A = s ·B.

Signature Generation on message M and secret key (h256, . . . , h511) and s
5: Generate a 512-bits pseudorandom nonce r := SHA512(h256|| . . . ||h511||M).
6: Interpret the nonce as a scalar and obtain a curve point: R := r ·B.
7: Compute the scalar S := (r + SHA512(R||A||M) ∗ s) mod L.
8: Encode the scalar S canonically (i.e. reduce S mod L prior to serializing).
9: Encode the curve point R canonically (i.e. reduce the R.y mod 2255 − 19 prior to

serializing).

8 Chalkias K., Garillot F. and Nikolaenko V.

Group structure, small-order subgroup: Elliptic curve group E is isomorphic
to ZL × Z8. A base point B ∈ E generates a subgroup of order L and there is a
small torsion point T8 ∈ E that generates a subgroup of order 8. Any point P
of the group E can be uniquely represented as a linear combination of B and
T8: P = b · B + t · T8, where b ∈ 0, . . . , L − 1 and t ∈ 0, . . . , 7. We say that the
discrete log of P base B is b. We say that a point P is of “small order” iff b = 0,
“mixed order” iff t ̸= 0 and b ̸= 0, and “order L” iff b ̸= 0 and t = 0.

Order Point Serialized point

Canonical serializations

1 1 (0, 1) 010000..0000
2 2 (0, 2255 − 20) ECFFFF..FF7F
3 4

(
−
√
−1, 0

)
000000..0080

4 4
(√
−1, 0

)
000000..0000

5 8 . . . C7176A..037A
6 8 . . . C7176A..03FA
7 8 . . . 26E895..FC05
8 8 . . . 26E895..FC85

Non-canonical serializations

9 1 (−0, 1) 010000..0080
10 2 (−0, 2255 − 20) ECFFFF..FFFF
11 1 (0, 2255 − 18) EEFFFF..FF7F
12 1 (−0, 2255 − 18) EEFFFF..FFFF
13 4

(
−
√
−1, 2255 − 19

)
EDFFFF..FFFF

14 4
(√
−1, 2255 − 19

)
EDFFFF..FF7F

Table 1: Small order points of Curve25519
in its twisted Edwards form.

y y + 2255 − 19 Valid Order

0 2255 − 19 ✓ 4
1 2255 − 18 ✓ 0
2 2255 − 17 ✗ -
3 2255 − 16 ✓ 8 · L
4 2255 − 15 ✓ 4 · L
5 2255 − 14 ✓ 8 · L
6 2255 − 13 ✓ 8 · L
7 2255 − 12 ✗ -
8 2255 − 11 ✗ -
9 2255 − 10 ✓ 2 · L
10 2255 − 9 ✓ 8 · L
11 2255 − 8 ✗ -
12 2255 − 7 ✗ -
13 2255 − 6 ✗ -
14 2255 − 5 ✓ 8 · L
15 2255 − 4 ✓ 4 · L
16 2255 − 3 ✓ 8 · L
17 2255 − 2 ✗ -
18 2255 − 1 ✓ 4 · L

Table 2: Non-canonically en-
coded points.

Table 1 shows the small order points with their orders. Any of the points of order
8 can serve as a small subgroup generator, T8. For four intermediate rows exact
formulas exist, but they are cumbersome and irrelevant for our writing. We will

just mention that for one of these points y =
(√

−1+
√

1+d
d

)
, x =

√
−1 · y, and

3 The least significant three bits of the scalar are unset to allow using the same secret
key in the DH-key agreement, where the EC point of another party is raised to the
secret key. Raising to the exponent divisible by 8 there erases the small-subgroup
component and defends against attacks that exploit the non-trivial co-factor of 8.
The most significant bit is unset to make sure that the number is indeed the multiple
of 8 and was not wrapped around the modulus. The second most significant bit is
being set to prevent variable-time implementation of multiplication that first looks
for the first most significant bit that is set. Note however that the secret key has 251
pseudo-random bits and is not uniformly random mod a 253-bits prime L, though
this loss of a few bits of random bits is deemed acceptable.

Taming the many EdDSAs 9

the remaining 3 points are combinations of x and y with various signs: (−x, y),
(x, −y) and (−x, −y). Full hexidecimal encodings of the small-order points can
be found in Appendix B.

Encodings, non-canonical encodings: An element of the scalar field mod L
is encoded with a 256-bits string in little-endian format. If the scalar is reduced
mod L its encoding is called canonical, otherwise it is called non-canonical.

A group element (x, y) is encoded as a 256-bits string, that consists of 255-bits en-
coding of y (in little-endian format: bytes placed from left to right and from least
significant to most significant) followed by a sign bit which is 1 iff x is negative.
Given the serialization, the x coordinate is restored as x = ±

√
(y2 − 1)/(dy2 + 1).

If the y coordinate in the encoding of point (x, y) is reduced mod q the encoding
is called canonical, otherwise it is called non-canonical. Two special points with
x = 0 (y = 1 or y = 2255 − 20) are canonically encoded only with a sign bit 0,
otherwise the encodings are non-canonical.

There are 19 elliptic curve points that can be encoded in a non-canonical form.
Those points have y coordinates in the range [2255−19, . . . , 2255−1]. Among these
points there are 2 points of small order and from the remaining 17 y-coordinates
only 10 decode to valid curve points all of mixed order. The details are given
in Table 2. No evidence suggests that the discrete log base B of any of those
points is known except for the first two (the discrete log is zero base B for those).
Note that the base point was chosen “somewhat” verifiably arbitrarily: it has y
coordinate y = 4/5 (mod 2255 − 19).

3.1 Single signature verification

The Ed25519 signature scheme, as shown in Algorithm 2, achieves the strongest
notion of security (SUF-CMA + SBS); we explain all the extra-checks and im-
portant caveats for correct deployment. Algorithm 2 generally conforms with the
standards [18,32], except for an addition of line #2. The implementations which
we analyse in Section 5 do disagree with the Algorithm in various ways.

Algorithm 2 Ed25519 Algorithm: single signature verification

Signature Verification on message M , public key A and signature σ = (R, S)
1: Reject the signature if S /∈ {0, . . . , L− 1}.
2: Reject the signature if the public key A is one of 8 small order points.
3: Reject the signature if A or R are non-canonical.
4: Compute the hash SHA512(R||A||M) and reduce it mod L to get a scalar h.
5: Accept if 8(S ·B)− 8R− 8(h ·A) = 0.

Reject S ≥ L (line #1, Alg. 2): This check makes the scheme strongly
existentially unforgeable [8] (SUF-CMA). Many approaches have been used in
research or production-ready Ed25519 libraries to perform this validation and
unfortunately sometimes the check is incomplete or not optimized.

10 Chalkias K., Garillot F. and Nikolaenko V.

Reject small order A (line #2, Alg. 2): This check makes the scheme strongly
binding (SBS-secure, see Definition 1 in Section 2), i.e. resilient to key/message
substitution attacks, as we prove in Theorem 1 (the proof resembles the proof
of Theorem 7 in [8]). Although this additional check is not part of any standard
yet and rarely appears in the libraries. The check can be done very efficiently
by simply verifying that 32-byte array of A received for verification is not in the
set of 14 small order points (including the non-canonical encodings) shown on
Table 1 with extended version in Appendix B. Note that for binding the rejection
of small order R is not required.

Theorem 1. Let Verify be Algorithm 2 with the hash function assumed to act
as a random oracle H with output length at least 2λ. Then Verify is SBS secure.

Proof. To successfully break SBS security the adversary A needs to output two
public keys A = aB + tT8 and A′ = a′B + t′T8, a signature σ = (R, S) and
two messages m and m′, s.t. (m ̸= m′) or (A ≠ A′) and Verify(A, σ, m) and
Verify(A′, σ, m′) both accept. The success of the verifications imply that a ̸= 0
and a′ ̸= 0 (since small order public keys are rejected) and

8SB = 8R + 8H(R|A|m)A and 8SB = 8R + 8H(R|A′|m′)A′.

It follows that 8H(R|A|m)A = 8H(R|A′|m′)A′. Which implies H(R|A|m)a =
H(R|A′|m′)a′ mod L. Since a′ ̸= 0, it follows that

H(R|A′|m′)a′(a)−1 = H(R|A|m) mod L. (1)

For some fixed a, m′, a′ the probability for a random m to satisfy the equation is
⌈22λ/L⌉

22λ . Assuming the adversary can make up to Qh random oracle queries, the
probability of finding a collision that satisfies Eq. 1 and thus the probability of a
successful attack is ⌈22λ/L⌉

22λ ·Q2
h. Given that the adversary runs in time polynomial

in λ, Qh is bounded by some polynomial in λ. Having that the bit-length of L is
close to λ, the overall probability of success is negligible. ⊓⊔

On rejecting non-canonical encodings of A and R (line #3, Alg. 2): The
RFC 8032 and the NIST FIPS186-5 draft both require to reject non-canonically
encoded points, and as we show in Section 5 not all of the implementations follow
those guidelines. For consistency with the standard, the non-canonical points
should be rejected. The non-canonical points of which the discrete log is known
are all of small order as explained in the beginning of this section, therefore the
security level of the scheme is judged by the acceptance/rejection of small order
points, not by acceptance/rejection of non-canonical subset of those.

On computing SHA512 (line #4, Alg. 2): If non-canonical points are ac-
cepted, there are two possible ways to put them into the SHA512 hash: [1] re-
encode them in a canonical form or [2] put them in the hash as they were received.
This can cause discrepancy between implementations, thus it is recommended to
reject non-canonical points.

Taming the many EdDSAs 11

Note that if an implementation uses cofactorless verifcation (discussed next),
then it is absolutely required to fully reduce the scalar SHA512(R||A||M) to
[0, L) range before multiplying it by A. Otherwise, the implementations might
disagree on the validity of a signature with a public key of mixed order. Indeed,
consider a public key of mixed order: A = bB + tT8, where B is the base point, T8
is a point of order 8 and 0 < t ≤ 7. Consider an unreduced integer h′ ≥ L which is
an output of SHA512 and a reduced scalar h = h′ mod L. With high probability
for a random h: ((h · t ̸= h′ · t) mod 8) (e.g. with probability 7/8 for t = 1), then
h · A ̸= h′ · A causing the verifications to disagree depending on whether they
reduce the scalar or not. Despite this discrepancy, an implemtation will incure
significant performance loss if the scalar is not fully reduced prior to scalar-to-
point multiplication, therefore we never see this problem in practice. However, if
the RFC8032 [18] is read precicely it says to interpret the 64-octet digest as an
“integer” k and compute [k]A, where [n]X is defined as “X added to itself n times”,
whereas instead it should say to take the digest, reduce is as an integer to get
0 ≤ k < L. In general other applications where Curve25519 is used should be very
careful and not rely on the fact that (n mod L)((m mod L)P) = ((nm) mod L)P
as this is not generally true for a composite order point P .

On cofactored vs. cofactorless verification (line #5, Alg. 2): The veri-
fication equation of Alg. 2 is called cofactored. If implementation computes the
verification equation as stated on line #5, then the multiplication by 8 should
be done as a separate scalar-to-point multiplication, i.e. it is incorrect to first
compute (8h) mod L as the resulting scalar might not be divisible by 8 as an
integer and thus will not clear the low order component from A, if it exists. This
is a recommended way to verify EdDSA signatures in the standards [18,32]. The
original paper of Bernstein et al. [5] on line 5 of Alg. 2 was not multiplying by
8, which is called cofactorless verification. Almost all the cryptographic libraries
use the cofactorless version to make verification slighly faster. In the next section
we explain why multiplying by a cofactor is required for applications that want
to take advantage of batch verification. We therefore would recommend to use
cofactored verfication as it conforms with the standard, it enables batch verifica-
tion that could bring substantial speed-up (around 2x) and in addition enables
novel methods for faster single signature verification [30].

3.2 Batch signature verification

A batch verification technique allows verifying several signatures in a single op-
eration, much faster than verifying signatures one-by-one (e.g. using the dalek
ed25519 library [17] on a 2.9 GHz 6-Core Intel Core i9 CPU single signature
verification takes 50 µs, while batch verification with more than 20 signature
costs 20 µs per signature). Bernstein et al. [5] proposed to use random linear
combinations to verify the batch of signatures, in Algorithm 3 we restate the tech-
nique with a small alteration (i.e. in a cofactored form) that makes it compatible
with single signature verifcation.

12 Chalkias K., Garillot F. and Nikolaenko V.

Algorithm 3 Ed25519 Algorithm: batch signature verification

Batch Signature Verification on n tuples {Mi, pki = Ai, σi = (Ri, Si)}n
i=1

1: Reject the batch if any of the signatures fail any of the checks 1,2 or 3 of single
signature verification, Algorithm 2.

2: Sample n uniformly random integers zi ∈ {0, 1}128.
3: Compute SHA512(Ri||Ai||Mi) and reduce it mod L to get a scalar hi.
4: Accept if

(
8

(
−

∑
i
ziSi mod L

))
B + 8(

∑
i
ziRi) + 8(

∑
i
(zihi mod L)Ai) = 0.

The batch verification equation stated on line 4, Alg. 3 is called cofactored. The
original paper of Bernstein et al. [5] on line 4, Alg. 3 was not multiplying by 8
which is called cofactorless verification. We claim that only cofactored verifica-
tions, single and batch, are compatible with each other 4. Other combinations
(cofactorless-single with cofactorless-batch; cofactorless-signle with cofactored-
batch; cofactored-single with cofactorless-batch) are all incompatible.

Consider the following sequence of signatures of length n ≥ 1, we construct a
first signature maliciously (deviating from the standard signature generation
algorithm) and we construct the rest of the signatures in an ordinary way:

1. Given small integers tA and tR (where 0 ≤ tA, tR ≤ 7), generate the first
signature in a special way:

(a) Set A1 := s · B + tA · T8 for some secret scalar s.

(b) Set R1 := r · B + tR · T8 for some secret scalar r.

(c) Set S1 := r + SHA512(R1||A1||M)s.

(d) Set σ1 = (R1, S1).

2. For i = 2..n, construct the rest of the signatures σ2, . . . , σn in an ordinary
way, following the standard procedure for signature generation (Algorithm 1).

Table 3 demonstrates that only cofactorless single with cofactorless batch verifica-
tions agree with each other accepting the signatures with overwhelming probabil-
ity, other combinations do disagree with each other. Batch verification is run on
the batch constructed above, single verification is run on σ1 from the batch. For
cofactorless single signature verification, the ✓p (or ✗p) indicates that we search
for M that succeeds (or fails) the verification which happens with probability p
for a random M . Next for cofactorless batch verification given M from the pre-
vious column, the ✓q (or ✗q) indicates that with probability q over the choice of
the first random scalar z1, the batch verification will succeed (or fail) disagreeing
with single signature verification. In all of these cases, cofactorless batch verifi-
cation will exhibit flaky behavior — sometimes accepting and sometimes failing
4 The incompatibility in semantics between batch verification and cofactorless single

verification was known in the form of cryptography community folklore [27], but not
laid out precisely.

Taming the many EdDSAs 13

the batch depending on the choice of the random scalars. Note that cofactorless
single verification succeeds if and only if ((h · tA)mod L + tR)mod 8 = 0. Here h
denotes h = SHA512(R1||A1||M1), note that h depends on tA and tR. Cofactor-
less batch verification succeeds if and only if ((z1 · h · tA)mod L + z1 · tR)mod 8 = 0.
We assume that single verification (or iterative verification over a batch) is a
ground truth, so that batch verification, seen as a “failure detection” procedure,
can show false negatives (FN) when it does not reflect an iterated failure or false
positives (FP) when it fails a batch where iterated verification would not. The
combination that gives false positives (cofactorless single + cofactorless batch) is
the most dangerous for applications, since an invalid sequence of signatures might
pass the batch verification and be accepted. Moreover those false positives are
flaky, meaning that a batch of signatures accepted by one verifier (through batch
verification) might be rejected by another verifier that used another set of ran-
dom scalars. Unfortunately, this combination is proposed in the original paper [5]
and is the one most widely implemented (e.g. in Dalek [17] and LibSodium [21]
libraries).

cofactored cofactorless Example conditions

[1] [2] [3] [4] tA tR pk’s R’s [1]+[2] [1]+[4] [2]+[3] [3]+[4]
single batch single batch order order

✓1 ✓1 ✓1/8 ✗7/8 1 0 mixed L ok FN ok FN

✓1 ✓1 ✗7/8 ✓1/8 1 0 mixed L ok ok FN FP

✓1 ✓1 ✗1 ✓1/8 0 1 L mixed ok ok FN FP

✓1 ✓1 ✓1/8 ✗7/8 1 1 mixed mixed ok FN ok FN

✓1 ✓1 ✗7/8 ✓1/8 1 1 mixed mixed ok ok FN FP
Table 3: Examples of different combinations of tA and tR that cause inconsistency
between cofactorless single and batch verifications. FN denotes a false negative
case, FP denotes a false positive case, ok denotes no discrepancy.

The combinations that give false negatives (cofactorless single + cofactored batch
or cofactored single + cofactorless batch) are less devastating, but here the batch
verification can only be used as a heuristic and in case of its failure the application
will have to downgrade to verifying signatures iteratively to confirm the failure.
The only combination that works as expected and where the batch verification can
be trusted to conform with iterative verification with overwhelming probability
is cofactored single with cofactored batch.

Clearly, inconsistencies yielding false positives or false negatives could mislead
developers, and slow the adoption of the scheme in domains that would benefit
from the verification performance granted by batch verification. 5

5 For much of the same reasons, cofactorless verification is incompatible with a method
for fast (single) signature verification initially suggested by Antipa et al. [1] and

14 Chalkias K., Garillot F. and Nikolaenko V.

In summary, an Ed25519 implementation interested in either of:

– serving users which require near-perfect determinism in the behavior of sig-
nature verification, such as blockchains,

– batch signature verification and its performance,

– faster signature verification procedures based on linear combinations (e.g. [30]),

would be well-served by at least adding a cofactored verification to their API,
if not switching to cofactored verification entirely, similarly to what the NIST
FIPS 186-5 suggests.

4 Optimizations

This section presents some optimization tricks for faster canonicity checks and
for cofactored verification. Note that many libraries either omit canonicity checks
for micro-efficiency reasons or perform a validation logic that fully iterates over
the input byte-arrays which is not optimal. However, as there are no secrets
involved when verifying a signature, optimized variable-time implementations
can be applied; otherwise, if constant-time is required, such optimizations should
be used with caution.

Checking for non-canonical S: Due to the very small probability of the 252-th
bit being set, for honestly generated S, a succeed-fast solution can initially check
if the four most significant bits of S are unset, and in the rare case when it is
set, one can fallback to the exhaustive check of S < L.

Listing 1.1: Optimized canonicity validation for S (in Rust)
fun i s_canonica l_s (s_bytes : &[u8]) −> bool {

return
i f s_bytes [3 1] & 240 == 0 { true /∗ succeed f a s t ∗/ }
else i f s_bytes [3 1] & 224 != 0 { f a l s e /∗ f a i l f a s t ∗/ }
else { fu l l_s_canonic i ty_check (s_bytes) }

}

Unfortunately, this optimization trick was only introduced very recently67 and
many implementations usually perform the full exhaustive check. Even worse,
the original ref10 [31] and all of the libraries that ported that code, perform

recently made practical by Pornin [30], yielding speedups of about 15% on single
signature verification. In essence, this method relies on mutualizing point doublings
involved in checking a linear combination of the verification equation using a carefully-
chosen scalar. As this check’s outcome should not depend on the ability of the scalar
to clear small components in the equation, which is only achievable if the verification
equation is cofactored.

6 Pull request to Libra: github.com/libra/libra/pull/907, merged Sep 11, 2019
7 Pull request to Dalek: github.com/dalek-cryptography/ed25519-dalek/pull/99,

merged Dec 5, 2019

https://github.com/libra/libra/pull/907
https://github.com/dalek-cryptography/ed25519-dalek/pull/99

Taming the many EdDSAs 15

the "incomplete" fail-fast check (only line#4 in Listing 1.1) which only rejects
signatures if any of the first 3 most significant bits are set. The latter implies that
non-canonical S values might be accepted, when S ∈ [2252, L) and as a result this
makes the scheme malleable (breaks SUF-CMA security), since an S < 2252 − C
can be altered to S′ = S + 2252 + C and still pass the check.

Recall that the order of the base point is L = 2252 + C, where C = 27742317
777372353535851937790883648493, is slightly greater than 2252 + 2124 because
C = 2124 + 6474669844813699569391024826398135277 is a 125-bit number. Due
to this structure, serialized canonical S values (using a 32-byte array) do always
have their first three most significant bits unset, since for canonical S: S < L.
Along the same lines, for honestly generated signatures, the probability that the
fourth most significant bit (252th bit) is set is very small, roughly 1/2128:

Pr[252-th bit of S is set] = log2(1 − (2252 − 1)/L) ≈ 1/2128

Checking for non-canonical y-coordinates: We present a succeed-fast im-
plementation for validating canonicity of point’s y coordinate with the minimum
effort. The logic is very simple and based on the fact that 2255 − 19 is a 255-
bit number, where all of its bits, but the 2nd and 5th less significant bits, are
set. That said, the 8 less significant bits correspond to the decimal number 237.
Thus, a succeed fast algorithm checking the canonicity of y-coordinate of the
point could start with an “is less than 237” check on the less significant byte,
which will succeed with probability 237/256 = 92.5% and then perform inequality
checks (“is not equal to 255”) for every next byte, which results to 255/256 =
99.6% probability of success per byte. The above results to an amortized cost of a
single byte inequality comparison in the happy path where most of the evaluated
coordinates are indeed canonical (see Listing 1.2).

Listing 1.2: Optimized canonicity validation for y-coordinate (in Rust)
fun i s_canonical_y (bytes : &[u8]) −> bool {

i f bytes [0] < 237 { true }
else {

f o r i in 1. .=30 {
i f bytes [i] != 255 { return t rue }

}
(bytes [3 1] | 128) != 255

}
}

Checking for non-canonical points: In case small-order points are being
rejected, the non-canonical y-coordinate check above is sufficient to check for
non-canonical encodings of points. Otherwise, this check will miss out two non-
canonical encodings of small-order points, those are points number 9 and 10 from
Table 1. They have negative-zero x-coordinate, making them non-canonical, and
a y-coordinate being less than 2255 − 19 making them pass the y-coordinate

16 Chalkias K., Garillot F. and Nikolaenko V.

canonicity check. For those non-canonical points, the Listing 1.2 will return true,
while the full non-canonicity check should return false. Those points need to
be rejected separately, though the check can be combined with the succeed fast
algorithm of y-canonicity.

Faster signature verification: Note that there is a faster way to evaluate
the equation in line #5 of Algorithm 2: first compute V = SB − R − hA and
then accept if V is one of 8 small order points (or alternatively compute 8V
with 3 doublings and check against the neutral element). Similarly, for batch
verification, to evaluate the equation on line #4 of Algorithm 3 one can compute
V = (−

∑
i ziSi mod L) B + (

∑
i ziRi) + (

∑
i(zihi mod L)Ai) and accept if V

is one of 8 small order points.

5 Test vectors and analysis of implementations

We have generated several test vectors to help researchers and implementers man-
age the complexity of the Ed25519 implementations, beyond the sanity checks
present in specification ([18, 32]) and the limited set of serialization and mal-
leability checks from project WycheProof [6]. They aim at two goals, a) detecting
specific implementation choices: for example we strive to detect all combinations
of checks on individual components of a signature in vectors [0-4, 6] below, and
b) detecting common implementation mistakes, which help explain inconsistent
behavior occurring in the wild, see vectors [5, 7-9] below.

By running the first set against an implementation, library users will be able to
notice at a glance whether that library is using cofactored verification or not,
and which security properties from Section 3 it provides. They will also know if
they can use batch verification soundly, as shown in Section 3.2, and if they work
in a context where determinism is key, they will able to list the checks that any
other library interfacing with their project should match exactly. Yet depending
on results, those same users may also discover bugs, so that by providing the
second set of vectors, we hope Ed25519 maintainers will also be able to remedy
implementation shortcuts and constrain variations in Ed25519 implementations
to opinionated but valid approaches.

5.1 Tested conditions and bugs

Our test vectors are generated with a HC-128 RNG seeded with decimals of π,
and the source code generating them is publicly accessible [13]. The vectors are
reproduced in Appendix C. We lay out the conditions satisfied by our vectors in
Table 4, following the nomenclature used throughout the paper (public key A,
signature σ = (R, S), h = SHA512(R||A||M)). As the table lists conditions that
each vector verifies simultaneously, readers should be reminded that a verification
failure could be attributed to any one of them.

Test vectors 0-3 are made to pass both cofactored and cofactorless verification,
vectors 0-2 have small R, A or both, vector 3 only has mixed-order A and R.

Taming the many EdDSAs 17

M σ S A’s R’s 8(SB) = SB =
order order 8R + 8(hA) R + hA

0 ..22b6 ..0000 S = 0 small small ✓ ✓

1 ..2e79 ..ac04 0 < S < L small mixed ✓ ✓

2 ..b9ab ..260e 0 < S < L mixed small ✓ ✓

3 ..2e79 ..d009 0 < S < L mixed mixed ✓ ✓

4 ..f56c ..1a09 0 < S < L mixed mixed ✓ ✗

5 ..f56c ..7405 0 < S < L mixed L ✓(1) ✗

6 ..ec40 ..a514 S > L L L ✓ ✓

7 ..ec40 ..8c22 S ≫ L (2) L L ✓ ✓

8 ..8b41 ..5f0f 0 < S < L mixed small (3) - (3) - (3)

9 ..8b41 ..4908 0 < S < L mixed small (3) - (3) - (3)

10 ..155b ..ac04 0 < S < L small (4) mixed - (4) - (4)

11 ..c06f ..ac04 0 < S < L small (4) mixed - (4) - (4)

Table 4: Conditions satisfied by the test vectors.
(1) #5 fails any cofactored verification that pre-reduces scalar 8h.
(2) #7 fails bitwise tests that S > L.
(3) #8-9 have a non-canonical R (vector #10 from Table 1); implementa-
tions that reduce R before hashing will accept #8 and reject #9, while
those that do not will reject #8 and accept #9.
(4) #10-11 have a non-canonical A (vector #10 from Table 1); implementa-
tions that reduce A before hashing will accept #10 and reject #11, while
those that do not will reject #10 and accept #11.

Vector 4 is made to pass cofactored and fail in cofactorless verification, this vector
is the main indicator of what type of verification is used in the implementation
(assuming that vector 3 passes which implies that mixed-order points are not
checked for). Vector 5 will be rejected in cofactored libraries that erroneously
pre-reduce the scalar: compute (8h mod L)A instead of 8(hA), note that the
former might not clear the low order component from A, while the later will
always do. Vector 6 or 7 will be accepted in libraries that accept non-canonical
S (i.e. S > L) or do an incomplete cheaper check. Vectors 8-9 have small R that
is serialized in a non-canonical way, libraries that reduce R prior to hashing will
accept vector 8 and reject 9, and libraries that do not reduce R for hashing will
behave in an oposite way on vectors 8-9. Vectors 10-11 behave in the same way
for a public A serialized in a non-canonical way.

SUF-CMA secure libraries should reject non-canonical S, i.e. reject vectors 6-
7. Libraries that offer SBS security should reject small order public keys, i.e.
reject vectors 0-1. Vector 4 can be used to differentiate between cofactored vs.
cofactorless verification.

5.2 Test results

We have tested a number of major implementations of Ed25519 which we list in
Table 5.

18 Chalkias K., Garillot F. and Nikolaenko V.

Library 0 1 2 3 4 5 6 7 8 9 10 11 SUF-CMA SBS cofactored

Algorithm 2 ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

RFC 8032(∗) [18] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

FIPS 186-5 [32] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

BoringSSL ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

BouncyCastle ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

CryptoKit ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Dalek ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

ed25519-donna ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

ed25519-java ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Go ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

LibSodium ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

nCipher nShield ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

npm ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

OpenSSL-3.0 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

PyCA ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

python-ed25519 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

ref10 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

TweetNaCl.js ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Zebra ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Table 5: Test vector results8

(*) The cofactored, recommended, version of the RFC 8032 is used.

We note that except for Zebra, all tested libraries implement a cofactorless variant
of EdDSA (as witnessed by vector 4). That is despite the fact that libraries
like Dalek or LibSodium offer batch verification, which, as we have noted in
Section 3.2, comes with semantics that are not compatible with cofactorless
verification.
8 BoringSSL: version 0.16.5, github.com/briansmith/ring,

BouncyCastle: Java version 1.8.0, www.bouncycastle.org/java.html,
CryptoKit: iOS 13, Apple Swift version 5.3,
Dalek: Version 1.0.0-pre.4, github.com/dalek-cryptography/ed25519-dalek,
ed25519-donna: commit 3a83a4f, github.com/signalapp/libsignal-protocol-c,
ed25519-java: Version 0.3.0, github.com/str4d/ed25519-java,
Go: version 1.11.5 darwin/amd64,
LibSodium: Version 1.0.18, github.com/jedisct1/libsodium,
nCipher nShield: Solo XC High (nC433N) FW 12.60.2, SW 12.50.5,
npm: Version 6.13.4, Node package manager,
OpenSSL-3.0: Version OpenSSL 3.0.0-alpha6-dev, github.com/openssl/openssl,
PyCa: Version 3.1, backed by OpenSSL 1.1.1g, github.com/pyca/cryptography,
python-ed25519: commit d57b8f2c, github.com/warner/python-ed25519,
ref10: from Libsodium version 1.0.18 (ED25519_COMPAT mode),
TweetNaCl.js: version 1.0.3, www.npmjs.com/package/tweetnacl,
Zebra: version 2.1.1, github.com/ZcashFoundation/ed25519-zebra

https://github.com/briansmith/ring
https://www.bouncycastle.org/java.html
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/signalapp/libsignal-protocol-c
https://github.com/str4d/ed25519-java
https://github.com/jedisct1/libsodium
https://github.com/openssl/openssl
https://github.com/pyca/cryptography
https://github.com/warner/python-ed25519
https://www.npmjs.com/package/tweetnacl
https://github.com/ZcashFoundation/ed25519-zebra

Taming the many EdDSAs 19

On the plus side, most libraries do perform the check that a signature’s scalar
component S is in a canonical form (S < L, vectors 6-7), which is essential to
prevent malleability issues and is required for SUF-CMA security. The exceptions
are ed25519-java, TweetNacl, python-ed25519, ed25519-donna, and ref10, the
latter two of which only perform the incomplete fail fast check (as shown in
Listing 1.1 line#4), rather than a full check of its size. This explains why ed25519-
donna and ref10 reject S >> L values of vector 7.

Only Libsodium checks for components of small order (vectors 0—2). The absence
of this check on the public key, A, (i.e. acceptance of vectors 0-1) could lead to
non-binding signatures. No common software library implements a full check for
mixed order points (vector 3), which is understandable since this would require
an expensive multiplication by the full order of the large subgroup and does not
necessarily enhance the security level of the scheme.

The nCipher nShield HSM has a cofactorless implementation, and does not per-
form a modular reduction on the hash output. In this it follows the precise
reading of RFC 8032 referred to above rather than the example code. Vector 2
is accepted because there is no difference between reducing and non-reducing
implementations (the scalar multiple of the small-order component happens to
be a multiple of 8).

All libraries, except Zebra, reject non-canonical R in the signature (vectors 8-9).
The non-canonical A (vectors 10-11) is rejected by BouncyCastle, LibSodium
and nCipher nShield, the rest of the libraries accept the non-canonical A (despite
the RFC and NIST FIPS mandate its rejection) and all, except ed25519-java,
reduce it prior to hashing.

6 Related work

6.1 Security analyses of Ed25519

EdDSA signatures are a variant of Schnorr signatures and inherit the security
properties of the latter. Schnorr signatures are compiled from Schnorr’s identifi-
cation protocol [35,36] using the Fiat-Shamir transform [10].

Pointcheval and Stern [28,29] were the first to give a security proof for Schnorr
signatures reducing security to the hardness of the discrete logarithm in the Ran-
dom Oracle model using the celebrated Forking Lemma. However, the reduction
had a quadratic loss. It was later shown [26,37] that under a plausible assump-
tion for any algebraic reduction such loss is inevitable, the result was recently
extended [11] to show that unconditionally the security of Schnorr signatures
can not be tightly based (generically) on any non-trivial non-interactive hardness
assumption.

Neven, Smart, and Warinschi [25] gave a proof for Schnorr signatures in the generic
group model relying on two concrete properties of the hash function: random-
prefix preimage resistance, and random-prefix second-preimage resistance. The

20 Chalkias K., Garillot F. and Nikolaenko V.

generic group model proof combined with the conjectured optimal hash function
security by Neven et al. [25] therefore build confidence in the parameter choices
of EdDSA and specifically the output length of the hash function.

Most recently, Brendel et al. [8] analyzed the security of three instantiations of
EdDSA: the Ed25519-Original [5], the original reference implementation by the
authors of the EdDSA paper, the Ed25519-IETF [18], the version standardized
by the IETF in RFC 8032 and closely followed by NIST FIPS 186-5 [32], and the
implementation used by LibSodium [21], Ed25519-LibSodium. They showed that
the strongest notion of security would be achieved by LibSodium library that
rejects S not in the set {0, . . . , L − 1} and rejects A and R of small order. This
variant achieves strong existentially unforgeability (SUF-CMA) and resilience to
key substitution attacks, M-S-UEO and MSB (which are together equivalent to
SBS). We observe that to achieve SBS security it is sufficient to just reject the
public key A of small order which we prove in Theorem 1 following [8], we focus on
practical aspects of implementing the most secure variant of the scheme correctly.
We additionally bring attention to the question of correctness of signatures
and the disagreement around this question between different libraries and the
standard. We provide test-vectors alongside the way of generating them to check
for those inconsistencies.

6.2 Attacks on Ed25519

In 2017, a vulnerability in the Monero crypto-currency allowed for arbitrary
double spending [24] due to the cofactor issue. This issue was mitigated by
checking the order of the key image using a full scalar multiplication. Samwel
et al. [34] showed the feasibility of side-channel attacks on the SHA512 hash
function used in EdDSA, and suggest as a protection to add randomness to the
output of the hash. Weisbart et al [38] recently extended these results to show
that power analysis of a single trace using convolutional neural networks achieve
key recovery on a single trace. In [33] almost 100% key recovery through voltage
glitching and electromagnetic fault injection was demostrated. Aranha et al. [2]
studied the resilience under fault of “hedged” signatures —that hash secret key,
message and nonce to derive the per-signature randomness— and discriminate
the type of faults mitigated by this practice.

7 Acknowledgements

The authors would like to thank the reviewers of this paper for comments that
greatly improved its contribution. We would also like to thank Yashvanth Kondi
and Isis Lovecruft for fruitful discussions on the topic of this paper, and Rob
Starkey, Yolan Romailler, Irakliy Khaburzaniya, and Rajath Shanbag for con-
tributing to running our test vectors against EdDSA implementations. We would
also like to thank Christopher Peikert, Idan Meshita and Jiayu Xu from the
Algorand team for spotting an ambiguity in is_canonical_y check of Section 4
which we gladly clarified.

Taming the many EdDSAs 21

References
1. Adrian Antipa, Daniel Brown, Robert Gallant, Rob Lambert, René Struik, and

Scott Vanstone. Accelerated verification of ECDSA signatures. In Selected Areas
in Cryptography, pages 307–318. Springer Berlin Heidelberg, 2006.

2. Diego F Aranha, Claudio Orlandi, Akira Takahashi, and Greg Zaverucha. Security
of Hedged Fiat-Shamir Signatures under Fault Attacks. In Eurocrypt, 2020.

3. Nicolas Barry, Giuliano Losa, David Mazieres, Jed McCaleb, and Stanislas Polu.
The Stellar Consensus Protocol (SCP). IETF, draft-mazieres-dinrg-scp-05, 2018.

4. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards Curves. In Africacrypt 2008. 2008.

5. Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering, 2012.

6. Daniel Bleichenbacher, Thai Duong, Emilia Kasper, and Quan Nguyen. Project
Wycheproof. https://github.com/google/wycheproof.

7. Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based
on computational diffie-hellman. In PKC 2006, pages 229–240. Springer, 2006.

8. Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable
security of ed25519: Theory and practice. IACR ePrint, 2020:823, 2020.

9. Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and
MtGox. Lecture Notes in Computer Science. Springer, Heidelberg, 2014.

10. Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In CRYPTO’ 86, 1987.

11. Nils Fleischhacker, Tibor Jager, and Dominique Schröder. On tight security proofs
for schnorr signatures. J. Cryptol., 32(2):566–599, Apr 2019.

12. L.M. Goodman. Tezos — a self-amending crypto-ledger. Technical report, 2014.
13. Novi Research Group. Ed25519-speccheck. https://github.com/novifinancial/

ed25519-speccheck, commit 79e20af.
14. Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016.
15. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining

your ps and qs: Detection of widespread weak keys in network devices. In USENIX
Security Symposium, 2012.

16. IANIX: Things that use Ed25519. https://ianix.com/pub/ed25519-deployment.
html.

17. Henry de Valence Isis Agora Lovecruft. ed25519-dalek: Fast and efficient rust
implementation of ed25519 key generation, signing, and verification in rust. https:
//github.com/dalek-cryptography/ed25519-dalek, version 1.0.0-pre.4.

18. S. Josefsson and I. Liusvaara. RFC 8032: Edwards-Curve Digital Signature Algo-
rithm (EdDSA), Jan 2017.

19. A. Langley, M. Hamburg, and S. Turner. RFC 7748: Elliptic Curves for Security,
Jan 2016.

20. Libra blockchain. https://github.com/libra/libra.
21. LibSodium. https://github.com/jedisct1/libsodium, version 1.0.18.
22. Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based

schemes using a prime order subgroup. In CRYPTO, 1997.
23. Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segregated Witness. Bitcoin

Improvement Proposal 141. Created December 21, 2015.
24. R. luigi1111, “fluffypony” Spagni. Disclosure of a major bug in CryptoNote based

currencies, 2017.
25. Gregory Neven, Nigel P Smart, and Bogdan Warinschi. Hash function requirements

for Schnorr signatures. Journal of Mathematical Cryptology, 3(1):69–87, Jan 2009.

https://github.com/google/wycheproof
https://github.com/novifinancial/ed25519-speccheck
https://github.com/novifinancial/ed25519-speccheck
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/libra/libra
https://github.com/jedisct1/libsodium

22 Chalkias K., Garillot F. and Nikolaenko V.

26. Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Asiacrypt. Springer, 2005.

27. Trevor Perrin. Xed25519. email to the Modern Cryptography mailing list, 2016.
28. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In

Eurocrypt, 1996.
29. David Pointcheval and Jacques Stern. Security arguments for digital signatures

and blind signatures. Journal of cryptology, 13(3):361–396, Mar 2000.
30. Thomas Pornin. Optimized lattice basis reduction in dimension 2, and fast schnorr

and eddsa signature verification. IACR ePrint 2020/454, 2020.
31. Ref10: the ed25519 software from supercop benchmarking tool. https://bench.

cr.yp.to/supercop.html, accessed 24 Aug, 2020.
32. Andrew Regenscheid. NIST FIPS 186-5 (Draft), Digital Signature Standard, 2019.
33. Niels Samwel and Lejla Batina. Practical fault injection on deterministic signatures:

the case of eddsa. In Africacrypt, 2018.
34. Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella.

Breaking Ed25519 in WolfSSL. In CT-RSA, 2018.
35. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO’

89, pages 239–252, New York, NY, 1990. Springer New York.
36. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

4(3):161–174, Jan 1991.
37. Yannick Seurin. On the exact security of schnorr-type signatures in the random

oracle model. In Eurocrypt, 2012.
38. Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes: Machine

learning-based side-channel attack on eddsa. IACR ePrint 2019/358, 2019.
39. Pieter Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62, 2015.
40. Pieter Wuille. Strict DER signatures. Bitcoin Improvement Proposal 66, 2015.
41. Jianying Zhou and Dieter Gollmann. Observations on non-repudiation. In Asiacrypt.

Springer, 1996.

Appendix A Vectors breaking the non-repudiation

The test vector in Table 6a attacks the non-repudiation property of Ed25519
signature scheme with a small-order public key and a signature that is valid for
two meaningful messages.

Appendix B Serialized small order points

Table 6b shows 14 possible serializations of small order points.The ordering of
the points match the ordering in Table 1 of Section 3.

Appendix C Test vectors

The test vectors discussed in Section 5 are given in little-endian hex-encoded
format in Table 6c.

https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

Taming the many EdDSAs 23

Appendix D Summary of changes

Oct 9, 2020 : First version (very close to the initial submission for the Security
Standardisation Research Conference - SSR 2020 on Aug 31, 2020).

Oct 14, 2020 : Add test-vectors for non-canonical pk, add an example for repudi-
able signatures, explain the nCipher results (very close to the camera-ready
version submitted to SSR 2020 on Oct 12).

Oct 21, 2020 : Edit the citation [8] following the update of their pre-print and a
private conversation with Cas Cremers.

Dec 3, 2020 : Fixing a typo in Table 5: Dalek rejects very large S (vector 7).
Edit citation [8] to reflect that a typo in their report was not a factual error.

Dec 2, 2021 : Clarifying the non-canonical check on the y-coordinate in Section 4.

24 Chalkias K., Garillot F. and Nikolaenko V.

{" message1 " : "Send 100 USD to Alice ",
" message1 (UTF -8)" : "53656 e64203130302055534420746f20416c696365 ",
" message2 " : "Send 100000 USD to Alice ",
" message2 (UTF -8)" : "53656 e64203130303030302055534420746f20416c696365 ",
" pub_key " : " ecff7f ",
" signature " : " a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dc \

a5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04 "}

(a) Test vectors breaking non-repudiation

Canonical serializations

1 0100
2 ECFF7F
3 0080
4 00
5 C7176A703D4DD84FBA3C0B760D10670F2A2053FA2C39CCC64EC7FD7792AC037A
6 C7176A703D4DD84FBA3C0B760D10670F2A2053FA2C39CCC64EC7FD7792AC03FA
7 26E8958FC2B227B045C3F489F2EF98F0D5DFAC05D3C63339B13802886D53FC05
8 26E8958FC2B227B045C3F489F2EF98F0D5DFAC05D3C63339B13802886D53FC85
Non-canonical serializations

9 010080
10 ECFF
11 EEFF7F
12 EEFF
13 EDFF
14 EDFF7F

(b) Full serialization of small order points.

[{" message " : "8 c93255d71dcab10e8f379c26200f3c7bd5f09d9bc3068d3ef4edeb4853022b6 ",
" pub_key " : " c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa ",
" signature " : " c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a \

00"} ,
{" message " : "9 bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79 ",

" pub_key " : " c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa ",
" signature " : " f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43 \

a5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04 "},
{" message " : " aebf3f2601a0c8c5d39cc7d8911642f740b78168218da8471772b35f9d35b9ab ",

" pub_key " : " f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43 ",
" signature " : " c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa \

8 c4bd45aecaca5b24fb97bc10ac27ac8751a7dfe1baff8b953ec9f5833ca260e "},
{" message " : "9 bd9f44f4dcc75bd531b56b2cd280b0bb38fc1cd6d1230e14861d861de092e79 ",

" pub_key " : " cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d ",
" signature " : "9046 a64750444938de19f227bb80485e92b83fdb4b6506c160484c016cc1852f \

87909 e14428a7a1d62e9f22f3d3ad7802db02eb2e688b6c52fcd6648a98bd009 "},
{" message " : " e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c ",

" pub_key " : " cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d ",
" signature " : "160 a1cb0dc9c0258cd0a7d23e94d8fa878bcb1925f2c64246b2dee1796bed512 \

5 ec6bc982a269b723e0668e540911a9a6a58921d6925e434ab10aa7940551a09 "},
{" message " : " e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec4011eaccd55b53f56c ",

" pub_key " : " cdb267ce40c5cd45306fa5d2f29731459387dbf9eb933b7bd5aed9a765b88d4d ",
" signature " : "21122 a84e0b5fca4052f5b1235c80a537878b38f3142356b2c2384ebad4668b7 \

e40bc836dac0f71076f9abe3a53f9c03c1ceeeddb658d0030494ace586687405 "},
{" message " : "85 e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40 ",

" pub_key " : "442 aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623 ",
" signature " : " e96f66be976d82e60150baecff9906684aebb1ef181f67a7189ac78ea23b6c0e \

547 f7690a0e2ddcd04d87dbc3490dc19b3b3052f7ff0538cb68afb369ba3a514 "},
{" message " : "85 e241a07d148b41e47d62c63f830dc7a6851a0b1f33ae4bb2f507fb6cffec40 ",

" pub_key " : "442 aad9f089ad9e14647b1ef9099a1ff4798d78589e66f28eca69c11f582a623 ",
" signature " : "8 ce5b96c8f26d0ab6c47958c9e68b937104cd36e13c33566acd2fe8d38aa1942 \

7 e71f98a4734e74f2f13f06f97c20d58cc3f54b8bd0d272f42b695dd7e89a8c22 "},
{" message " : "9 bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41 ",

" pub_key " : " f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43 ",
" signature " : " ecff \

03 be9678ac102edcd92b0210bb34d7428d12ffc5df5f37e359941266a4e35f0f "},
{" message " : "9 bedc267423725d473888631ebf45988bad3db83851ee85c85e241a07d148b41 ",

" pub_key " : " f7badec5b8abeaf699583992219b7b223f1df3fbbea919844e3f7c554a43dd43 ",
" signature " : " ecff \

ca8c5b64cd208982aa38d4936621a4775aa233aa0505711d8fdcfdaa943d4908 "},
{" message " : " e96b7021eb39c1a163b6da4e3093dcd3f21387da4cc4572be588fafae23c155b ",

" pub_key " : " ecff ",
" signature " : " a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dc \

a5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04 "},
{" message " : "39 a591f5321bbe07fd5a23dc2f39d025d74526615746727ceefd6e82ae65c06f ",

" pub_key " : " ecff ",
" signature " : " a9d55260f765261eb9b84e106f665e00b867287a761990d7135963ee0a7d59dc \

a5bb704786be79fc476f91d3f3f89b03984d8068dcf1bb7dfc6637b45450ac04 "}]

(c) Test vectors in JSON format exercising the cases of § 5

Table 6: Hex-encoded vectors

	Taming the many EdDSAs

