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Abstract. Since its appearance in 2008, Bitcoin has attracted considerable attention. So far, it has
been the most successful cryptocurrency, with the highest market capitalization. Nevertheless, due to
the method it uses to append new transactions and blocks to the blockchain, based on a Proof-of-
Work, Bitcoin suffers from poor scalability, which strongly limits the number of transactions per second
and, hence, its adoption as a global payment layer for everyday uses. In this paper we analyze some
recent proposals to address this issue. In particular, we focus our attention on permissionless blockchain
protocols, whose distributed consensus algorithm lies on a Proof-of-Work composed of k > 1 sequential
hash-puzzles, instead of a single one. Such protocols are referred to as multi-stage Proof-of-Works.
We consider a simplified scenario, commonly used in the blockchain literature, in which the number
of miners, their hashing powers, and the difficulty values of the hash-puzzles are constant over time.
Our contribution is threefold. Firstly, we derive a closed-form expression for the mining probability
of a miner, that is, the probability that the miner completes the Proof-of-Work of the next block
to be added to the blockchain, before any other miner does. Secondly, we show that in multi-stage
Proof-of-Works the mining probability might not be strictly related to the miner hashing power. This
feature could be exploited by a smart miner, and could open up potential fairness and decentralization
issues in mining. Finally, we focus on a more restricted scenario and present two attacks, which can be
applied successfully against multi-stage Proof-of~-Works: a Selfish Mining attack and a Selfish Stage-
Withholding attack. We show that both are effective, and we point out that Selfish Stage-Withholding
can be seen as a complementary strategy to Selfish Mining, which in some cases increases the selfish
miner profitability in the Selfish Mining attack.

Keywords: Mining probability - Hypoexponential distribution - Proof-of-Work - Blockchain scalability
- Blockchain security - Selfish mining

1 Introduction

Bitcoin and the blockchain technology. Bitcoin and the blockchain technology came to the fore in
2008, when the famous Bitcoin Whitepaper was published by Satoshi Nakamoto [1]. In a nutshell,
Bitcoin is a digital currency that allows end-users to exchange money across the Internet, without
relying on a third party, like a conventional bank. The Bitcoin transaction history is recorded on
the Bitcoin blockchain. In essence, the Bitcoin blockchain is a public, tamper-resistant, distributed,
and decentralized transaction ledger, maintained and replicated entirely and consistently in a peer-
to-peer weakly-synchronized (|2|) network, by anonymous, unpermissioned, and trustless nodes. It
is structured as a chain of blocks. Each block has a block header, which contains a hash pointer to
a Merkle tree, storing the transactions, and a hash pointer to the previous block in the chain [3].
The only way to extend the Bitcoin blockchain is by mining a new block. To mine a new block, any
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competitor node, called miner, is required to compose a block of transactions that have not been
added to the blockchain, yet. To this aim, every miner should follow the mining rules, laid down in
the Bitcoin protocol. A miner is successful in mining a new block, and receives Bitcoins as a reward,
if he is the first to complete a hash-puzzle, called Proof-of-Work (PoW, for short), for the current
block. To complete the PoW, the miner must add a nonce to the block header, such that the hash
value of the entire block, in binary, is lower than a target value for the hash-puzzle [3]|. Once this
occurs, the mined block is broadcasted to all network nodes, which verify that the block is valid,
and then add the block to their blockchain local copies.

Mining difficulty and pooled mining in Bitcoin. Let the hashing power of a miner be the number-of-
hash values he can compute in a second (hash/s, for short). It denotes the number of trials per
unit of time that the miner performs in his PoW. As a measure of the hash-puzzle complexity,
the difficulty parameter establishes how long it takes on average for miners to add new blocks of
transactions to the blockchain, with respect to their hashing powers. The difficulty parameter is
adjusted every 2016 mined blocks, by estimating the network current hashing power (|4} |5]), aiming
at a 10 minutes average inter-block latency [6]. Consequently, it is recomputed approximately every
two weeks. Notice that, by increasing the difficulty, the probability of finding a block for any single
miner decreases. Indeed, as analyzed in |7], there is an inversely proportional relationship between
the difficulty of the hash-puzzle and the expected number and the wvariance of PoWs completed
(and, consequently, the rewards obtained) by any miner in any interval of time. Such a condition
is especially unsuitable for low-powered miners, as they hardly ever will complete a PoW in a
reasonable time. Thus, miners are encouraged to collaborate in a mining pool and share the block
rewards, proportionally to their contributions. In such a way, the expected reward of each miner
stays the same as in individual mining in the long-term, while the rewards wvariance is linearly
decreased. Yet, pooled mining is a two-edged sword; while it effectively lowers the reward variance
and spreads the reward efficiently over time, it can also trigger block mining to take place only
in a handful of mining pools. Therefore, pooled mining is a threat to the decentralization of the
blockchain. Alternative and more decentralized mining pools, such as P2Pool and SmartPool have
been presented in the literature. Nonetheless, P2Pool is not efficient and does not scale well with the
number of miners [§]. SmartPool |9] seems to be more efficient and scalable to a very large number
of miners. However, a full implementation of SmartPool is still perceived to be a long way off |10,
11].

Forks. Miners could deviate from the protocol specifications. A faulty miner may mine a block that
does not completely respect the rules. Such a faulty behavior may be accidentally caused by external
factors, e.g., network propagation delays, or it may be voluntarily brought on by a malicious miner
[12} 13, |14].

As an example, different nodes might add, as the latest block, a different block to their respective
blockchain local copies. Such an event occurs, for example, when two miners find and broadcast a
PoW for their blocks almost at the same timeﬂ. As a consequence, the Bitcoin blockchain may be
forked into two or more branches [15]. Decker et al. formally proved that, as the block size grows,
it takes longer to propagate the block to the majority of the network nodes, thereby increasing
the blockchain fork probability [16]. To deal with this issue, the Bitcoin protocol has adopted the
longest valid chain rule |3} |17]. Accordingly, each honest (i.e., non-faulty) network node selects and
uses only the longest valid chain of his local copy of the blockchain.

Forks may also cause several other concerns. As an example, a block recently added by a miner
to his longest valid chain may suddenly disappear from the blockchain. Indeed, another miner
may broadcast to the network blocks belonging to a different longest valid chain. In this case, the

3 For simplicity, we do not consider the case of planned forks, caused by protocol upgrades 3]
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most recent blocks of the first miner become stale or orphan blocks, and all the transactions the
blocks carry will disappear with them. As a consequence, blockchain forks could open the door
to several attacks. Well-known examples are double-spending attacks, which would let an attacker
double-spend a coin that he has already spent in another transaction |18 and selfish-mining attacks,
which, as we will see, would let the attacker increase his profit from mining |19].

Bitcoin has adopted the heuristic of transaction confirmations to mitigate the damages caused
by orphan blocks. A transaction is heuristically considered as confirmed, and permanently added to
the blockchain, when a block containing the transaction is mined, and five other blocks are mined
on top of it. The intuition is that if five successive blocks are mined to extend a branch, then, with
high probability, the majority of the network nodes share that branch as the longest valid chain in
their respective local copies of the blockchain. At this point, this branch will presumably be in the
longest valid chain also in the long-term.

The Bitcoin scalability issue. Scalability concerns with the number of transactions that can be pro-
cessed per unit of time by the network. More precisely, for security reasons [20], Bitcoin only appends
new blocks of size up to 1 Megabyte, with an average latency of 10 minutes. These constraints limit
the Bitcoin transaction processing rate (TPS, for short) to an average number of 7 transactions
processed per second |3|. Many researchers have attempted various approaches to deal with this
issue so far [21].

Sarkar has been the first researcher to propose a multi-stage PoW blockchain protocol [22]. In a
nutshell, a PoW is multi-stage if it is composed of k > 1 sequential hash-puzzles. Every miner has
to sequentially add k nonces to the headers of a block, in order to complete his multi-stage PoW.
Each miner can start the hash-puzzle number s+ 1 of his PoW only after he has found a valid nonce
for the hash-puzzle number s. The first miner who completes the last hash-puzzle of his PoW is the
winner. Besides this innovative multi-stage PoW mechanism, the author also proposed a pipeline-like
mining architecture, in which multiple sequential blocks are mined at the same time. The proposal
improves the Bitcoin scalability, and also encourages joint efforts among miners, without the need
to be involved in a mining pool. However, Sarkar’s work lacks from a consistent and formal analysis
of multi-stage PoWs, and this motivated us to provide it.

Organization of the paper and our contribution. In this work, we formally analyze how a multi-stage
PoW affects block mining, in order to provide a first step in evaluating whether a multi-stage PoW
can be useful and worthwhile to be practically implemented. In detail, in Section [2] we overview
related works on the Bitcoin scalability problem, while, in Section [3] we describe Sarkar’s protocol
and point out some issues we found in its design. In Section [ we give some background, required
to understand the following sections. Then, in Section [5 we recap an analysis of single-stage PoWs.
In particular, denoting with the share of the network hashing power a miner holds the ratio between
the miner hashing power and the sum of the hashing powers of all the network miners, and with the
mining probability the probability that the miner completes the PoW of the next block to be added
to the blockchain before every other miner does, we recall a result of Houy (|23|) which showaﬂ that
they coincides. Later on, in Section [] we extend and generalize the analysis to multi-stage PoWs.
Under the same assumption, as our first contribution, we provide a closed-form expression for the
mining probability, which is valid in PoWs composed of a generic number k£ > 1 of sequential hash-
puzzles. As our second contribution, we show that in a multi-stage PoW the share of the network
hashing power held by a miner and his mining probability are not necessarily equal. Then, we focus
on a more restricted setting, and describe an equivalent but simpler strategy for the computation
of the mining probability. Afterwards, as our third contribution, in Section [7] we present two at-

4 As standard in the blockchain literature, e.g., |4 |6l |7], the target and the difficulty values of the hash-puzzle, and
the hashing powers of the miners, are all supposed to be constant over time in the analysis.
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tacks, which can be applied successfully against multi-stage PoWs: a Selfish Mining attack and a
Selfish Stage-Withholding attack. We show that both are effective, and we point out that Selfish
Stage-Withholding can be seen as a complementary strategy to Selfish Mining, which in some cases
increases the selfish miner profitability in the Selfish Mining attack. Finally, we conclude the paper
in Section [

Notice that some preliminary results presented here appeared in [24] and [25].

2 Related Works

As previously anticipated, Bitcoin does not scale well. Croman et al. suggested a few ideas to let
Bitcoin and other PoW-based blockchains scale beyond their boundaries [21]. For Bitcoin, a light-
weight approach to improve scalability may be retuning the block size and the inter-block latency
parameters. However, this approach may cause security issues: a larger block size or a lower inter-
block latency can raise the success probability of forks and double-spending attacks [20]. Therefore,
as pointed out in |26], solutions to the Bitcoin scalability problem should be designed carefully.

GHOST (Greedy Heaviest-Observed Sub-Tree) |20] replaces the longest valid chain rule. Indeed,
the nodes pick the chain belonging to the heaviest valid subtree in their respective local blockchain
copies. More precisely, it considers all the block subtrees rooted in one of the forking blocks. The
fork is resolved by picking the heaviest subtree, instead of the longest chain. The heaviest subtree is
the tree that has the highest number of blocks. Hence, differently from the longest valid chain rule,
GHOST also considers the orphan blocks out of the longest valid chain. In such a way, it improves
both fairness in the mining game and hashing power utilization, and it increases the transaction
processing rate, without compromising the security against double-spending attacks.

The Inclusive blockchain protocol |27] restructures the blockchain into a Directed Acyclic Graph
(DAG). It picks the longest valid chain from the DAG by applying an inclusive rule. Nodes are
incentivized to work honestly, which leads to increased transaction processing rate, fairness, and
hashing power utilization.

Bitcoin-NG |28| splits the mining operations into two phases: leader election and transaction
serialization. Time is divided into epochs. In each epoch, a PoW winner becomes the leader. The
leader is responsible for appending to the blockchain multiple micro-blocks carrying transactions.
Bitcoin-NG also offers a higher level of fairness in the mining game and better hashing power
utilization, compared to GHOST and Inclusive blockchain.

Parallel Proof-of-Work [29] scales by speeding up the PoW mining process. Indeed, it proposes
a parallel mining approach, in which miners work together to mine a given block.

3 Multi-Stage Proof-of-Works

The first multi-stage PoW protocol (and the last so far) dates back to 2019 [22], and has been
reviewed, with minor changes, in 2020 [30]. The author proposed an alternative mining game by
dividing the PoW in k > 1 consecutive hash-puzzles, also called stages, that have to be solved
sequentially. Each miner can start stage s + 1 of his PoW only after he has found a valid nonce for
stage s. The first miner who completes the last stage of his PoW is the winner. Let us proceed more
formally.

Hardware incompatible hash functions. Two hash functions are hardware incompatible if, any kind
of ASIqﬂ, or other special-purpose hardware, that allows computing the output of one function

5 Application specific integrated circuit.
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faster than general-purpose mining hardware, cannot be easily reconfigured to provide an advan-
tage over general-purpose hardware in the computation of the other function. The protocol employs
i hardware incompatible hash functions, Go, ... G, —1. There is no correlation between k and . The
purpose of using hardware incompatible hash functions is to make it harder for miners to obtain
high hashing power values in multiple stages. The author suggested the NIST finalists for the SHA-3
competition as a valid set of hardware incompatible hash functions.

Transactions. A transaction is a tuple (IL, OL, o), where

1. IL = ((pky, 1), - .-, (pky, Cs)), for s = 1. For each i € {1,..., s}, pk; is a public key, and ¢; is the
amount of coins to be withdrawn from the address H (pk;), where H is a hash function defined
at protocol level.

2. OL = ((a1, 01), ..., (ou, 6¢)), for t > 1. For each j € {1,...,t}, a; is a recipient address and 4;
is the amount of coins to send to «;.

3.0 6= Z;Zl §;. The difference (>;_; ¢;) — (Z;:l d;) = 0 is the sum of the transaction fees
in the block.

4. o is the set of signatures on the pair (IL, OL), computed with the private keys {ski}ic(1,..s},
paired with the set of public keys {pk:}ic(i,... }-

Genesis blocks composition and their PoWs. The first k& blocks of the blockchain, By, ..., Bg_1,
are the genesis blocks. They do not carry any transaction and must be mined to bootstrap the
protocol and to mine some initial coins. This way, it becomes possible making transactions. For
each i € {0,...,k — 1}, the i-th genesis block B; has the following structure

&
bdigest;,
ti7 Ny Tiy O, C;

where

7 is the block number, such that 0 < <k —1

bdigest, = Hy (0, to, 19, T0, @0, Co)

bdigest; = H; (bdigest,_;, t;,n;, T, @, ¢;), such that 1 <7<k —1
t; is the target value of the hash-puzzle of block %

n; is the nonce of block i

T; is the timestamp of the i-th block PoW completion time

«; is the address of the recipient of the i-th block reward

¢; is the reward for mining block %

The PoW for the i-th genesis block is valid if bdigest; < ¢;. Thus, the PoW of a genesis block is
very similar to Bitcoin’s Proof-of-Work.

General blocks construction and their PoWs. The PoW of a general block is divided into & > 1
sequential stages. For each s € {0,...,k — 1}, the hash function of the s-th stage is Hy = G mod -
Each stage target and difficulty parameters are set such that, globally, the expected time to solve
each stage, denoted by T, is the same. There is no fixed amount of coins given to a single user as
block reward, since the rewarding system is divided into stage rewards. A stage reward is a fixed
amount of coins given to a user who successfully completes a stage of a block. It consists of newly
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created coins, which will be effectively generated once the block has been fully mined and submitted
to the network. Furthermore, the winners of different stages of a block must split the transaction
fees earned from the block transactions. A general block By, has the following structure

bn,

bdigest,

L,

o, Mos To, 0, Co
t1, M, 71, o1, €1

tk—1, Me—1> Tk—1, Qk—1, Ck—1

where

bn > k is the block number

bdigest is the digest of the block

L is the possibly empty hash tree of transactions carried by the block
ts is the target value of the s-th stage hash-puzzle

7N, is the nonce of stage s

Ts is the timestamp of the s-th stage hash-puzzle completion time

a is the address of the recipient of the s-th stage reward

cs is the reward for completing stage s

Consider a general block B;1x, with ¢ > 0. Based on the definition of the protocol, the outputs
of the stages are obtained through the following computation

Girho = Ho (bdigest;, i + k, RH(Litk), Litk,05 Qistk,05 Cidh,05 Titk,05 it k.0)
Girk,1 = Hi (bdigesty 1, Givk,0: tisk, 1 Qith,15 Cith, 15 Titk, 15 itk 1)

itk k-1 = Hp_1 (bdigest;y g1, itk k—2> bidckk—15 Qiphk—15 Citkk—1» Tidk k—1s Ttk k1)
where
RH(L;4x) is the root hash of the possibly empty hash tree in which the

block transactions are stored

Gi+k,s is the output of stage s
titk,s is the target value of the s-th stage hash-puzzle
Nitk,s 1S the nonce of stage s
Tit+k,s is the timestamp of the s-th stage completion time

Qi+, is the address of the recipient of the s-th stage reward

 Citk,s is the reward for completing stage s

The PoW is valid if and only if g1 s < titrs, for each s € {0,...,k — 1}. Finally, the value
of gitk k-1 is assigned to bdigest, . Following the protocol, for any s > 1, stage s of the PoW for
block B; 1 requires two inputs: the output of stage s — 1 of the PoW for block B; ) and bdigest, .

Since the network has already mined blocks By, ..., Bx_1 to bootstrap the protocol, the second
required input is already available in any stage of block By. Later, we will exploit this property
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in our analysis on the mining probability regarding block Bjg. Due to the nature of the PoW, the
author suggested a pipeline-like mining architecture, in which miners working in the same pipeline
can freely partition themselves into k groups. The architecture may be realized by letting the k
groups work in parallel and on different parts of the same task. If the number of the already mined
general blocks in the blockchain is ¢ > 0, then, for each s € {0,...,k — 1}, group s works on
stage s of block B;yi_s. For any given s € {0,...,k — 1}, the hashing power of group s is equal
to the sum of the hashing powers of the group miners. Hence, miners belonging to different groups
of the same pipeline mine collaboratively to complete the PoW before the other pipelines do and
obtain the block reward. At the same time, miners in the same group mine competitively. Finally,
separate pipelines compete against each other to mine the blocks. Generally, once a miner in a
group completes a stage, he broadcasts to the network all the information necessary to start the
successive stage of the same block and to prove that the previous stage was completed successfullyﬂ
The pipeline-like mining architecture is shown in Fig.

Remarks. Notice that the proposed protocol raises some issues.

1. Some hardware incompatible hash functions may be present in multiple stages. In this case, the
advantage the miner has gained by buying an ASIC for those hash functions may be worthwhile
in many stages.

2. A pipeline-like mining architecture cannot be easily constructed since stage mining is a stochastic
event. As a consequence, the pipeline-like block mining architecture can hardly ever be perfectly
synchronized among different stages. Considering a single pipeline, given an ¢ > 0 and a s €
{1,...,k — 1}, it is easy to see that the probability that stage s of block B;; is completed
exactly at the same time of completion of stage s — 1 of block B;1 k41 is negligible.

G [| Sok }_. TLI e = e B =F N e (= PLIN o RS o (=L ] \

Bkn[ So’“' . S1k+1 - Sgk” — S:‘kn > Sk—zk” e

N

By, Sph2 [ g2 [ g2 | --p g, 2 o g Jke2 o g K2

—|
—

B'“3 [ Sok+3 s S1"*3 . Sk.4k+3 — Sk.3k+3 o Sk.2k+3 —» g, k2 ]

Biagq | | SoFe5T [ ikt Lo sk L] ggkeket 4.[&‘!4'!4-1 ] ..,]
K K active blocks /

Fig. 1: The pipeline-like mining architecture with ¢« = 0. The x axis denotes the time. At most K PoWs can be active
at the same time.

6 Notice that, the author pointed out that his architecture achieves the sharding (|31]) property. Roughly speaking,
the sharding property incentivizes a more collaborative mining among distributed miners. Indeed, miners working
in the same pipeline can freely partition themselves into groups, such that miners belonging to different groups work
collaboratively on different pieces or shards of a shared job. Moreover, the block reward system is more equitable
than the one provided by Bitcoin. Indeed, Bitcoin rewards only the miner of a block, while in the multi-stage PoW,
each miner who completed one of the k stages of a mined block, receives a share of the block reward.
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4 Preliminaries

We briefly review some elements of probability theory, used in the rest of the paper. We provide a
high-level description of Bernoulli trials, Binomial and Poisson distributions, Poisson point processes,
and of exponential and hypoexponential distributions. Our treatment is based on [32]|. The reader
which is familiar with these elements can safely skip the section.

4.1 Discrete time probability

Bernoulli trials A Bernoulli trial, also known as a binomial trial, is an experiment with two pos-
sible outcomes: a success with probability p € [0, 1], and a failure with probability 1 —p. A sequence
of n Bernoulli trials is a sequence of independent and identically distributed (i.i.d.) experiments,
each of them having the same success probability p.

Binomial distribution In the discrete time, for any r € {0,...,n}, the number r of successes out
of a sequence of n Bernoulli trials, is given by the binomial distribution Bin(r,n,p), defined as

Bin(r,n,p) = <n)p’"(1 -p)" " (1)
r
If X is the random variable denoting the number of successes, then P(X = r) = Bin(r,n,p).

Negative binomial distribution Consider a discrete sequence of Bernoulli trials. The execution
of new trials is stopped when the r-th success is found, where r > 1. Then, the total number k£ > 0
of failures, already occurred when the r-th success happened, is given by the negative binomial
distribution NB(k,r,p), defined as

s = (7T - at )

If N is the random variable denoting the number of failures already occurred when the r-th success

happened, for any integer k > 0, then P(N = k) = NB(k,r,p).

Notice that, for any integer k£ > 0, the probability that at most k failures had happened can be
computed as follows:

k .
P(N <k) = Z(Hr_l)pr(l—p)" = I(pirk+1) (3)

: r—1
=0

where I(;,,) is a Regularized beta function, also known as Regularized incomplete beta function |33,
34, 135|. Notice that I(p;r, k + 1) itself can be computed by [35]:

Blp;r,k+1)
Ipyrk+1) = ——= 4
(p’r’ + ) 5(7‘,]{—{—1) ( )
where §(,) is the complete beta function, defined by B(r,k + 1 f 2771 — x)* dx, and B(;,) is

the incomplete beta function, a generalization of the complete beta functlon defined for p € [0, 1]
as B(pirk+1) = [ 2" (1 — x)k dx [36].
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Poisson distribution If the number n of Bernoulli trials in a sequence is large (asymptotically,

n — 00), p is small (asymptotically, p — 0), and the product n-p converges to a positive finite value

A = n - p, then the binomial distribution is approximated by a Poisson distribution Pois(\, 1),

defined as

N e A
rl

Pois(\,r) = (5)

If Y is the random variable denoting the number of successes, then, for any integer r» > 0, the
P(Y =r) = Pois(\,r). The parameter A is the mean of the Poisson distribution, and indicates the
expected number of successes, i.e., E[Y] = X (see |37]).

4.2 Continuous time probability

Poisson point processes Roughly speaking, a Poisson point process is a stochastic process that
counts the number of independent occurrences, over continuous time, of an event that happens with
an average rate A. Each occurrence is represented as a point on the time axis. If A is constant over
time, then the process is called homogeneous [38].

Let t denote the continuous time, and let n be a large number of Bernoulli trials, executed in
a time unit (e.g., 1 second). The number r > 0 of successes, obtained over the time ¢, is given by
a Poisson point process, having rate parameter A = n - p |39, 40]. Any new point in the process,
represented as a point on the t-axis, i.e., the time axis, corresponds bijectively to a new success in
a Bernoulli trial. The process is distributed according to Pois(At,r). Therefore, letting Y be the
random variable denoting the number of successes over time ¢, applying expression , it holds
that:
( A t)r e— (A1)

r!

PY=r)= (6)

The expected number of successes in an interval of time long ¢ is given by E[Y] = A ¢.

Ezxponential and hypoexrponential distributions The inter-arrival times, or waiting times, be-
tween two consecutive points in a homogeneous Poisson point process, are described by an expo-
nential distribution exp()), having the same rate parameter A of the process [41]. Formally, the
probability it takes ¢ units of time until a point is found is given by the probability density function
fx (t), defined as:

fx (t) = e ™M (7)
If X is the random variable denoting the time it takes to find a point, then P (X =t) = fx (¢).

The probability it takes more than ¢ units of time until a point is found is given by the survival
function Rx (t), defined as
Ry (t) = e ™ (8)

Hence, P (X > t) = Rx (t). The expected value E[X] = 1/\ denotes the average waiting time
until the next point is found. The exponential distribution is the only continuous time distribution

to be memoryless |38]. The memoryless property is formally denoted by the equivalence P(X >
t+x|X >t) = P(X > z), that holds for any given ¢ and x, both greater than or equal to 0.
Roughly speaking, the property holds because Bernoulli trials are i.i.d. experiments, and, therefore,
the failures of the past trials, executed in time ¢’ < ¢, are mathematically irrelevant for the outcomes
of the next trials.

To explain the consequences of this property, let us bring a simple example. If the first point is
not found in the first ¢ = 10 seconds of the process execution, then the conditional probability that
it will take more than & = 5 other seconds until the point is found is equal to the unconditional
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probability that the point takes more than x = 5 seconds to be found, since the starting time of the
process.

Let a > 2 and let X1, X3, ... X, be mutually independent exponential random variables, having
rate parameters Ai, Aa, ..., Aq. Then, X = 3" | X; is a hypoezponential random variable, assuming
values according to the hypoexponential distribution Hypo(A1, A2, ..., Aq) The random variable X
can be viewed as the waiting time until a point is found in the homogeneous Poisson point process
having rate A1, summed to the waiting time until a point is found in the homogeneous Poisson point
process having rate Ao, and so on. It is worth remarking that the hypoexponential distribution is
not memoryless. A closer look is given in Subsection [6.2

5 Mining probability in single-stage PoWs

In this section, we recap a mathematical analysis of single-stage PoWs, which we use as a starting
point for our analysis in the following sections. We also recall an important result from Houy |23,
which states the equivalence between the share of the network hashing power held by a miner and
his mining probability.

Mathematical analysis Let h > 0 be the hashing power of a miner, let ¢ > 0 be the current
target value of the hash-puzzle, and let d = 225 /t be the current difficulty of the hash-puzzle. The
hash-puzzle output space is {0,1}2%0, since the protocol uses a double SHA-256 hash function.
Using the random oracle assumptionm to model the hash function, widely used in the Bitcoin and the
blockchain literature, for any distinct input x, the output of the hash function can be considered as
uniformly and independently distributed over the output space. It follows that, under the assumption
of constant hash-puzzle difficulty, every trial the miner makes to complete the PoW is a Bernoulli
trial, with success probabilityf]] prob = /226 = 1/d [43} [44]. Moreover, under the assumptions of
constant hash-puzzle difficulty and constant hashing powelﬂ the number of successes in any interval
of time is described by a homogeneous Poisson point process, having rate parameter A = h/d |4,
7. In our scenario, the homogeneous Poisson point process describes the number of PoWs the
miner completes per interval of time. A new point found in the homogeneous Poisson point process
corresponds bijectively to a new valid nonce found — a new PoW completed, or, equivalently, a new
block mined — by the miner. Formally, the probability of having & > 0 successes in an interval of
time ¢ is given by expression @

Let the block height of a block be the integer v > 0, denoting its position in the chain. Consider
M > 2 competing miners, trying to mine the next block, say, with block height ~. For each p €
{1,..., M}, let X, be the exponential random variable, describing the inter-arrival time between two
consecutive blocks found by miner p. The parameter of X, is A, = hp/d, where hj, > 0 is the hashing
power of miner p. Then, the probability density function of X, is fx, (t) = P (X, =1t) = X, e Mt
and the survival function of X, is Rx, (t) = P (X, >t) = e " If each miner starts to mine the
block at the same time, then the winner is the miner whose Poisson point process first finds a point.
Notice that the processes are independent from each other. Therefore, for each p € {1,..., M}, the

7 We implicitly use this assumption throughout the entire work.

8 For completeness, it is worth noting that, in the literature, the difficulty value is also indicated as d’ = (2'¢ —
1) - 2298/t ~ 2724/t and, as a consequence, the probability value as prob = t/2?°® ~ 1/(d’ - 2°?) [42]. The value
(216 — 1) - 2298 =~ 2221 {5 the maximum allowed target value in Bitcoin. Nevertheless, our results are independent
from this consideration, as they can be equivalently applied to both notations by setting d’ = d/2%2.

9 Consider also that usually A > 0 is very high, and prob = 1/d is very small. Indeed, on Apr 15, 2021, d is greater
than 20 trillions [45].
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probability that miner p mines the block, is given by:

e M oo M
P (p mines block 7) = /pr (t) H Rx. (t)dt = /)\p et H e~ A=t gt
0 2=1 0

= z=1
27#p 27p
e M 0 M o M
:/ A [Te dt:/ Ap e (ami )t g — Ap/ e~ (= )t gy
0 ot 0 0
-1 M —1 A
=\, — . e*(Zj:O)‘j)'t N, . (—1)= P
s b=t 3 =g
hp
W 9
Y he ©)

Hence, the mining probability is independent of the hash-puzzle difficulty and target values, and is
equal to the share of the network hashing power the miner holds.

On the other hand, a new PoW is globally completed every time one of the M miners finds a point
in his Poisson point process. Thus, the global block mining event can be mathematically represented
as the superposition of the M mutually independent homogeneous Poisson point processes, which
itself is a homogeneous Poisson point process with rate parameter Ay, = Z;wzl Ap = 224:1 hy/d.

Hence, the waiting time until a new PoW is globally completed is given by an exponential
distribution with a constant rate parameter g0 The expected value of the exponential distribution
— the expected time until a new block is mined —, )\;lib, should be )‘;lib = 10 minutes |3}, 46].

6 Mining probability in multi-stage PoWs

In this section, we extend the previous result and propose a closed-form expression for the mining
probability. The closed-form expression works for every blockchain protocol whose PoW is composed
of £ > 1 sequential hash-puzzles, under the same assumptions used before. Each miner can start
the stage s+ 1 of his PoW only after he has found a valid nonce in stage s, and the first miner that
completes the last stage in his PoW is the winner and mines the block.

In Subsection we prove that, when k£ = 1, our expression reduces to @D, i.e., it is a true
generalization of the single-stage case.

As announced in Section [3] in the protocol proposed by Sarkar, the expression is applicable to
the PoW of the first general block By. Indeed, all the genesis blocks have already been mined before
the PoW of block Bj had started. Consequently, as soon as a miner completes stage number s of
the PoW of block By, for 0 < s < k — 2, he can immediately start stage s + 1 of the same PoW.
Conversely, given a block By, such that ¢ > 1 and s € {0,...,k — 2}, when a miner completes
stage s of block B;ix, he may need to wait until block B;is+1 is mined and bdigest;+sy+1 becomes
available. Only at this point, he can start stage s+ 1 of block B; . For this reason, we will restrict
our analysis to block By.

6.1 Notation

We use the following notation:

— the integer k£ > 1 denotes the number of sequential hash-puzzles of which a PoW consists.
— the integer M > 2 denotes the number of competing miners involved in the PoW of a block.
— dop,...,dp_1 are the positive real values representing hash-puzzles difficulties.
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— hps is a positive real value, denoting the hashing power of miner p on stage s, for a given
pe{l,...,M} and a given s € {0,...,k—1}.

— X, s is the exponential random variable describing the time miner p takes to complete the stage
s of a block, for a given p € {1,..., M} and a given s € {0,...,k — 1}.

~ Aps = hps/ds is the positive real parameter of X, s, for a given p € {1,..., M} and a given
s€{0,...,k—1}.

Let p € {1,...,M}. The time miner p takes to complete the entire PoW of a block is given by
the hypoexponential random variable X, 1, = Z?;S Xp,s. Indeed, the time to complete the PoW
of a block can be represented this way because every single stage can be described by its own
independent Poisson point process. The Poisson point process related to the first stage starts at the
same time the PoW of the block starts. Completing a stage is equal to finding the first point in
the Poisson point process. As soon as the first point in a Poisson point process is found, the stage
process is not relevant anymore, and the next stage (i.e., the next Poisson point process) starts.
Therefore, the time to complete every single stage is described by an exponential random variable,
while the time to complete the PoW is the sum of the exponential random variables associated to
the individual stages.

6.2 The hypoexponential distribution

Let us introduce more formally the hypoexponential distribution, in order to provide the basis for
our computation of the closed-form expression for the mining probability.

The probability density function and the survival function of the hypoexponential distribution
have been presented by Scheuer [47|, and, as closed-form expressions, i.e., expressions computable
in a finite number of standard operations, by Amari and Misra [48].

Literature results on the hypoexponential distribution. Consider a miner p € {1,..., M }. As explained
in [47], the literature studies on the hypoexponential distribution have been divided into three major
subcases, as follows:

1. In the first subcase, A, s = Ap ¢, for every pair s,s" € {0,...,k — 1}, with s’ # s. The hypo-
exponential distribution is reduced to an Erlang distribution with shape parameter k and rate

parameter \,, with A, = X,0=... = A, 1.
2. In the second subcase, A\, s # A, ¢, for every pair s,s" € {0,...,k — 1}, with s’ # s.
3. In the third subcase, A s can be either equal or not equal to \, ¢/, for every pair s, s’ € {0,...,k—

1}, with " # s.

The first two cases have been deeply studied in mathematics over the years, and we will not analyze
them in this section. Scheuer, Amari, and Misra were the first researchers to focus on the third and
most general scenario.

6.3 Probability density function and survival function

In this subsection, we recall the Amari and Misra’s closed-form expressions for the probability density
function and the survival function of a hypoexponential distribution [48]. We omit the majority of
the low-level technical details that have led to the composition of the two expressions that are not
necessary for our goals. We refer to the original papers for the complete mathematical analysis of
the two expressions.

Let p € {1,...,M}. Let fx,, (t) = P (Xp+, =t) be the probability density function, and let
Rx,, (t) = P (Xp4, > t) be the survival function of Xpy,. In order to compute fx,, (t)
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and Rx, . (t), the exponential random variables X, ; and X, o, such that s’ # s, and s,5" €
{0,...,k — 1}, which satisfy the condition A, s = A, & must be grouped together. Their common A
value must be denoted with a new parameter. For example, if & = 4, A\, 0 = A\p3, and A\p1 = Ay,
then two new parameters, 3,1 and 3,2, can be set as follows:

)‘p70 = )‘p,3 = 51771
Ap1 = Ap2 = ﬁp,2

At the same time, denote by 7, 1 and 7, 2 the number of A-parameters having value equal to 3,1 and
Bp,2, respectively. At this point, if the number of different A values is a), then a, pairs are obtained:
(Bp,1,7p1), - -+ > (Bpiay» Tp,a, ) - It holds that Zq _17p,q, = k. The probability density function fx, , (t)
is (]47], equatlon 13)

oo ﬁ )
fxp e ( t) < B, > Z pqmp B treap=lp g Fpoap t (10)
7 it it Tpap =)t (p = 1)1

where
- B, = (HZ§:1(5p,qp)rp’qp)’ (see 48|, Notation Paragraph))

— Py, () = (—1)%-1 (L, = 1) - ZQQ (1)ij71 (%p*;z’pm ) - 7, (see |48], equation 4)
Jp#ap

- Tj, = (Bpj, + )~ pap+iip) (see 48], between equations 3 and 4)

ap
= {i;, € N, for each j, € {1,...,a,}, such that Z ij, = lp—1}

— 2,01

Jp=1

IpFap

(see |48|, Notation Paragraph).
The survival function is (48], equation 3)
def fa I 5 )
R t :e pqp, p Pp trp,pr_lp —Bp.ap t 11
XPHrk By Zl lzl T’p @ — l —1)! ¢ (11)
-

where B, is defined as above, and

- ot g, — 1
- Wp,qp,lp (t) - = (_l)lp ! l - 1 Z H ( p]p ) * Tihp
22,(0) jp=0
]p?éqP
(see 48], equation 5. See [48|, Notation Paragraph for the

P

W

sign)

— Tj, as above

ap
— {2,(0) ={i;, € Ng, for each j, € {0,...,a,}, such that Z ij, = lp, — 1}
jp=0
JpFap
(see 48|, Notation Paragraph)

— Bpo = 0, 1p0 = 1 (see [48], between equations 2 and 3).
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6.4 A closed-form expression for the mining probability

Let p € {1,..., M} be a miner, and let v be a non-negative integer. The probability that miner p
is the first one in completing the PoW of block « is given by

o) M

P (p mines block v) = / [xp, (8) H Ry, ., (1) dt (12)
0 z=1
2#p

By substituting expressions and (1)), the above integration is equal to

ap Tp.ap
Z Z Pp.ap, zp ﬁp ) rpap—lp g Brapt | |
0 — 1) (1, — 1)!

qu
qp=1lp=1

M

Tz,qz
) | | ( E E Vege it ( IBZ q:) gz bz = Bzqs t ) dt
(re,q. — 1) (1 —1)!
z= qz=11,=1
Z#p

Due to the linearity of integration, the above expression is equal to

M P(Ip ﬂ )
B. | - Pydpylp P.ap trp,qr —lp o= Ppapt | .
(I1) [ (£ Samenietyers o
z=1

ap=11lp

Tz,qz

<H(Z DI o 1 ey L e_ﬁ”zt))dt

z=1 qz=11,=1

Z#p

More concisely, the above expression can be written as

M o0 2 Tz,qz
(IT=) / (H(ZZ;::Z Beasiy (e gt 6‘@"1”))6”
0
z=1

=1 q.=11,=1

where .
Baq.), iffz=p

Bz.q.), otherwise

@z,qz7lz (* ﬁz’qz) = { 2,9zl ((

2,qz,lz

Due to the distributive property of multiplication over addition, the above expression is equal to

M a1 "La ap "My
zoazdy (S Bzaz) 4rog —la ,—Bag, t
(H&)/ E:E, > E,( Gty ey A )dt
z=1 0 g=14= qu=1ly=1 ==!

Furthermore, due to the linearity of integration, the above expression is equal to

apy TMiapg

T1
()35 35 55 (f (gt son) o)

q1=105=1 au=1 ly=

and to
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M a1 Tlhq ap "Miapg M
_ M M
(TI2) 2o o >0 > ((I] cesetsbigy) - [T omtatmnto o mtiasma ).y
=1 a=1li—1  qu=1ly=1 = 2=1 0

A corollary of the Gamma Function definition With to = nt, for each o € Ny, and n € R such that
n # 0, it holds that

/ ¥ et = / 7at2a ceTl2 .ty = e / 2% - e~ t2dty
0 o 7 Ui Ui 0

By definition of I', the Gamma function [49|, we have that
o0
/ ™ - C_thtQ = F(O& + 1) = qal
0

and, hence, that

1 ® e ¢ a!
7704-&-1/0' tQ - € 2dt2:W.

We can apply the corollary to expression (13)). Indeed, for each z € {1,...M}, we have that
2,724 €N, and I, <7, 4, and, hence

M

Z(Tz,qz — lz) S No.

z=1

Moreover, for each z € {1,... M}, we have that 3., > 0, and hence

M
> Beg. #0.
z=1

Therefore, setting o = S (r,,. — 1) and n = 3> 8. ,., and applying the corollary, it holds
that

oo M M o0
/ tzz:1(7‘z,qz* lZ) 67 Zz:l 627‘12 t dt — / ta . efn'tdt
0

0
ol

na—i—l

(3 Bua) B (Y = 1))

z=1 z=1



16 D’Arco et al.

Hence, expression ([13) can be equivalently written as

1,41 apy "My
zqz lz z,qz
(H ) IS (( ety )
a=llL1=1 qu=1iy=1
Y 1= (re gz~ 12) M
‘(Zﬁz,qz) : (Z(T'zqu - lZ))'>
z=1 z=1

apy TMoapg

(I8 2% 3 %

z=1 am=1 lp=1

@z, 25l (* Bz, z) - -
( (H ! (Iz—1)! : ) ' MUZtlnomzal(EQil(’u,qz* 12)); (r1,qy —11)s - 5(*a,qp, — i) )
z=1

(Z]\J /B )1+EiVI:1(T'z,qz_lz),
z=11~%:4=

where

Multmomzal(zivf:l(rz,qz_zz));(rl,ql—ll),...,(TM,qM—zM) HM (Tzq _ |

is a multinomial coefficient. Finally, letting:

(Pz’ sttt — # 72,5, —1 .
@, (1) = B = (e, T ()
= By = - R N
~ Wl () = = = -0 Y, oI, (7 i )+ T
B 54z lﬁz =D
o @ qZ lz ( /827[12) { ’qZJZ(( /qu )) th .
o 2,qzlz 2,q. ) OUNIEIWIse

then, the mining probability of miner p is given by:

TLaq1 apy "My
P (p mines block ~) (HB ) E E E E
z=1 @=104=1 qv=1 ly=1

M

(H O (= 5%)) Multinomial o (1)) (g 1)y o s(rarayy —ar)
= M 1+ZM—1(TZ qz l2) (14)
( Zz:l Bzqu) . 7

To the best of our knowledge, expression is no further simplifiable.

6.5 The closed-form expression for the mining probability for £k = 1

It is worth remarking that, when k& = 1, expression reduces to expression @

Look at the closed-form expression of the mining probability given by . Let pe {1,...,M}. If
k =1, then the time miner p takes to complete the PoW follows the hypoexponential distribution
Xp +1 with parameter A\, o = hypo/dp. After grouping the operations, it remains a single pair (5p,1,1),
with 8,1 = Apo. Hence, for each p € {1,..., M}, the number of distinct S-values is a, = 1, and
the number of occurrences of this single S-value is r, 1 = 1.
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Therefore, expression consists of a single addend, that is:
M 101 1 1
P (p mines block ) = (HBZ) . Z Z Z Z
z=1 @=11=1 qu=11p=1

/ . .
Dapity (— Bpiap) ( H Laaits ( ﬂz,qz)) . Multznomzal(zgil(rzrqz_ 1)); (r1ay —10),
Z¢p

oy (PMLqpy — M)

(15)
1+E (72, z lz)
(Zi\/lzl /827(12) - q

In order to further simplify expression , notice that the following results hold:
Lemma 1. Hiw:l B, = Hiw:l Az0

Proof. The lemma holds since B, = A, , for each z € {1,..., M }.

Lemma 2. Multinomial( =1.

Ziwzl(rzyq,zf lz)); (T17(11 7l1)a 7(7"M711M 7lM)

Proof. The lemma holds since r, ,, = [, = 1, for each z € {1,..., M}.

1+ i\/I: 2,42 — Lz
Lemma 3. (Zil B:a.) Zemalrea =) Zi\il Az,0

Proof. The lemma holds since r, 4, = l., ¢ = l,and 8,1 = A, o, for each z € {1,...,M}.

Moreover, we also have that:

Lemma 4. &, (= Bpgq,) =

Proof. Since g, = 1, [, = 1, and given that 8, ., = B,1 = Ay, it holds that

pqp,lp (= Bpap) = 2971,1 (= Apo0)
Due to the definition of &', provided in Subsection since [, = 1, it holds that

o T Tpgp — 1
P11 (= Apo) = ) H < o > " T
QQP( ) Jp=1
JpFap
Focusing on the sum, and in particular on the definition of the {25, (1) set, provided in Subsection
since gp =1, a, =1, and [, = 1, we have

ap
(25,(1) = {ij, € Ny, for each j, € {1,...,ap}, such that Z ij, = lp—1}
Jp=1
Jp#ap
1
= {i;, € No, for each j, € {1}, such that Z ij, = 0}
Jp=1
Jp#1

= {i1 € Np, such that Zijp = 0}
Z
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Since an empty sum ([50]) of the form ) expr evaluates to 0, independently from expr, then the
constraint ) i;, = 0 always evaluates to true.
Once a v € Ny is assigned to i1, we focus on the product H] —1 (”Pﬂp’jp_l) - 7j,. Similarly to

7‘jp
IpF
the above analysis, since g, = a, = 1, but j, # ¢, is required, we have an empty product (|50]) of

the form [[,, expr’, which evaluates to 1, independently from expr’. Putting all together,

P14 (= = > H < +Tmp 1> " Th

29,(1) Jp=1
Jp#ap

—2H(*%p§¢@

=y 9

=) 1=1

i1="

Lemma 5. For each z € {1,..., M}, with z # p, it holds that ¥ ,_, (= Bzq.) = =

/\z,O

Proof. Let z € {1,..., M}, with z # p. Since ¢, = 1, I, = 1, and 8,4, = .1 = A0, it holds that

zqz,z ( BZ,Qz) = z,l,l( )‘270)

Due to the definition of ¥’, provided in Subsection since [, = 1, it holds that

%,1,1( Z H (ZJZ+TZ7JZ 1> e

2, (0) j==0
- J=7#4qz

Focusing on the sum, and in particular on the definition of the {25, (0) set, provided in Subsection
since ¢, = 1, a, = 1, and [, = 1, we have that

az
25_(0) = {ij, € Ny, for each j, € {0,...,a;}, such that Z i, = 1, —1}
jz:()
J=7#4q=
1

= {/L]z S N07 fOI‘ ea‘Ch .]z S {0, 1}7 SllCh that Z /sz — O}
ot
e
= {ip € No, i1 € No, such that » ;. = 0}
jz:()
= {ip = 0,41 € No}

Hence, ig = 0, while 7; can take any non-negative integer value ~. '
Once a vy € Ny is assigned to i1, we focus also on the product H] -0 (ijJr:;’jz_l)
J=#4q=

© Ty

e
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Putting all together, it holds that

;,1,1( Z H (ij—i_rz’]z 1) © T

22,(0) j==0
- ]z?éQZ

_ Z H <"Jz +7"z,Jz 1> T

zo =04.=0
=7 j.#1

_ Z H <ij +7"z,yz 1> -

10=0 j==0
11="y

10+7’Zo—1 T’z’o—l

10 =0
1=y

Since 7, = 1, it holds that Jfgl,l (— Az,0) = —79. The definition of 7y, provided in Subsection
is:
70 = (Bao + 1)~ (=0t

where 3,0 = 0, and ¢ is the input of function ¥ ; (i.e., t = A, in this case).
Given that 5,0 =0,7,0 =1,i0 =0, and t = A, o, then, it holds that

O = (6,2,0 + t)—(rz,o—i—io) - (_)\z,o)_l

Therefore,

1
)\z,O .

g’é,m (—X0) =—T0=

By using the above five lemmas, expression is reduced to

HZ 1>\ZO

M 2#p Ap.0 fp.0
A . — P = L .
( szl z,O) ( Z,QJ:I )\Z70) 2221 Az,0 Zi\/le hz,0

6.6 The relation between hashing power and mining probability

The mining probability in a multi-stage PoW can be practically computed with several tools, such
as Matlab or Wolfram Mathematica. We used the hypoexponential distribution library of Wolfram
Mathematica [51], in order to compute the mining probability through expression . Alternatively,
we also implemented a prototypical Mathematica Library, which computes the mining probability
directly through expression . Benchmarking results prove that, with M < 5 and k£ < 5, our
implementation of expression is faster than the built-in Mathematica library in computing the
mining probability value on a standard personal computerm Therefore, one practical future appli-
cation of expression may be a time-efficient computation of the mining probability. However,

10 The benchmarking was performed on a HP Pavilion Laptop 15-cs2023nl notebook, equipped with a quad-core CPU
Intel Core” i7-8565U CPU running at 1.80GHz, 8MB cache, and 16GB (2x8) SO-DIMM SDRAM DDRA4 running
at 2400MHz.
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at the moment, our prototypical implementation is slower than the built-in Mathematica library
with higher values for M and k. Optimized implementations of expression may significantly
improve the time performanceﬂ.

In the following, we describe the relationship between the share of the network hashing power
a miner holds and his mining probability. In particular, we prove that, if £ > 1, then the network
hashing power share of a miner and his mining probability are not necessarily equal.

Ezample 1. Let M = 2, k = 2, and dy = 28, d1 = 2'2. If hyy = 1053.3420821484203 hash/s,
hi1 = 3350.877902092879 hash/s, hay = 388.6077318015238 hash/s, he1 = 6217.723708824381
hash/s, then the first miner possesses the 39.99% of the network hashing pOWGIE and obtains a
mining probability of 0.49100464.

Ezample 2. Let M =4,k =4, and dp = 28, dy = 2'2, dy = 216, d3 = 219, If hy o = 145.199661766661
hash/s, h11 = 591.7504823551661 hash/s, hy 2 = 2583.430837941575 hash/s, h1 3 = 292.17570557-
33901 hash/s, hgo = 1.0007894670483253 hash/s, ho1 = 16.012631472773204 hash/s, has =
256.20210356437127 hash/s, ha 3 = 4.003157868193301 hash/s, hs o = 8090.186554101536 hash/s,
hs1 = 4183.275450846497 hash/s, hso = 1.000580310170299 hash/s, hzz = 5168.46086015704
hash/s, hyo = 5434.391620198674 hash/s, ha 1 = 4195.160557464889 hash/s, ha o = 1.0005808334-
883484 hash/s, has = 5169.58494402513 hash/s, then the first miner possesses the 9.99% of the
hashing power and obtains a mining probability of 0.9987.

Such cases can occur in the PoW of the first general block, By, using the pipeline-like mining
architecture of the protocol proposed by Sarkar. Indeed, let us focus on Ezample [1] and suppose
that the second miner is initially the only miner in the blockchain network, having just mined the
k genesis blocks to bootstrap the blockchain protocol. Let the hash functions used in the two stages
be hardware incompatible. Following the protocol, the difficulties of the hash-puzzles are set and
updated at repeated intervals to let the expected time to complete the two stages be the same.
It means that E[X3 ] & 1/A20 is equal to E[Xy ] & 1/A2,1. This constraint is satisfied in the
example. Right before the second miner starts to mine block By, the first miner joins the mining
game.

Similar cases to the one described in Ezamples[land [§ might advantage a clever miner, who may
optimally divide his hashing power among the different hash-puzzles and obtain a mining probability
value greater than the share of the network hashing power he holds.

In Ezamples [1] and [2 the inequality between the share of the network hashing power a miner
holds and his mining probability caused the mining process to be unfair. For instance, in Fxample
the first miner has the 90% probability to win the PoW of every block, and he expects to mine
averagely the 90% of the total mined blocks in the long-term, even though he possesses only the
10% of the network hashing power.

Moreover, mining fairness is a requirement to keep PoW blockchains decentralized. In particular,
Bano et. al. stated that, to mitigate centralization risks, the number of valid blocks mined by a miner
should be proportional to his share of the network hashing power in the network [52|. Therefore, in
order to implement a truly decentralized multi-stage PoW blockchain, further investigations for a
fair multi-stage PoW mining are required.

Individual and pooled mining. It is also worth noting that, if ¥ = 1, then the mining probability of a
miner is always the same whether his opponents are competing against each other or cooperating

1 Qur source code, its comprehensive documentation, and the information regarding the benchmark results are
available on GitHub: https://github.com/FraMog/MiningProbabilityMultiStageProof-of- Work.
2 The share of the network hashing power the first miner possesses is (h1,0 + h1,1)/(h1,0 + R1,1 + ho,o + ha1).
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and joining their forces inside a mining pool. This is valid since the share of the network hashing
power the miner holds is the same in both cases. The equivalence does not hold if £ > 1.

Example 8. Let M = 3, dy = 28, dy = 212, hLQ = h270 = h370 = 100 hash/s, and let h171 = h271 =

hs1 = 50 hash/s. In this setting, both the share of the network hashing power of the first miner

and his mining probability amount to % Instead, if the second and the third miner collaborate in a

mining pool p/, so that hy g =200 hash/s and hy ; =100 hash/s, then the mining probability of
1073

. . 1
the first miner is equal to 335 < 3.

6.7 Another approach to computing the mining probability under additional
assumptions

Let us assume a simplified scenario with only two miners, and let £ > 1 be the number of stages. Let
the two miners simultaneously start the mining process of the first non-genesis block Bj. For any
s€{0,...,k—1},let hy s > 0 and hy s > 0 be the hashing powers of the first and the second miner
on stage s, respectively, and let ds > 0 be the hash-puzzle difficulty. Assume, as in the previous
subsections, that the hashing powers and the difficulty values are constant over time. Additionally,
let us assume that

def def
hio="h1p="=hir_1 = ha, haoo=ho1="-+-=hop_1 = ho,

and
do=dy =+ =dp_ dzefd,

that is, the first and the second miner have hashing power h; and hse on every stage, respectively,
and all the hash-puzzle difficulties have identical value d. Let Ay = hy/d and A2 = hy/d. Then, for
each miner p € {1,2}, the mining process of a block consists in completing & equally difficult hash-
puzzles, which corresponds to finding k successive points in a homogeneous Poisson point process
having constant rate parameter \,. Hence, the random variable NN, which denotes the number of
hash-puzzles completed in an interval of ¢ units of time, has a Poisson distribution with mean \pt.
Moreover, the inter-arrival time between two consecutive stages, completed by a miner is described
by an exponential distribution, having the same rate parameter A of the process.

According to expression @, if both miners start a multi-stage PoW at the same time, then the
probability that the first miner completes the first hash-puzzle of his PoW, earlier than the second
miner does, is p; = hlf—Ll—ilhz On the other hand, the second miner completes his first hash-puzzle

earlier than the first miner does, with probability ps = ﬁ

We can generalize the above result, by exploiting the memoryless property of the exponential
distribution. Let t* > 0, and assume that at time ¢* the first miner is working on stage s; of
the PoW of block B;, 4k, while the second miner is working on stage sz of block B;,1, such that
s1,82 € {0,...,k — 1} and both i; and iy are greater than or equal to 0. If i; # ig, then the
two miners are working on different forks of the blockchain. Due to the memoryless property of
the exponential distribution, the failed trials of both miners that occurred at time ¢ < t* have no
relevance for the outcomes of their next Bernoulli trials. Hence, we can consider t* as the time when
both miners started their respective current stages. Therefore, the probability that the first miner
completes his current stage earlier than the second miner completes his own can be computed as in

expression @), using t* as common starting time, and amounts to hl}fﬁhQ.

If the aforementioned assumptions hold, the mining probability of a miner in a multi-stage PoW
is related to the Banach matchbox problem [53]. In the Banach matchbox problem, a mathematician
has two matchboxes, each of which includes k matches. For ¢ € {0, 1}, with probability p;, he selects
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box i, and, then, he takes a match out of that box. He carries on until one of the boxes is empty. A
match taken out from the first box corresponds bijectively to the first miner completing his current
hash-puzzle earlier than the second miner completes his own. The opposite holds for a match taken
out from the second box. The matchbox problem consists in evaluating, once one of the two boxes is
empty, how many matches have been removed from the other box. Therefore, to compute the mining
probability of the first miner, we are interested in counting the number n, such that 0 <n < k—1,
of hash-puzzles solved by the second miner when the first miner completes his PoW and empties
his matchbox.

Let N7 be a negative binomial random variable which counts the number of failures, that is, the
number of hash-puzzles already completed by the second miner when the first miner completed his k-
th hash-puzzle (k-th success). The mining probability M; of the first miner is equal to P(N; < k—1).
Hence, it holds that:

k—1

n+k—1 n

T S (i R (16)
n=0

where p1 = ﬁ is the success probability, that is, the probability that the first miner completes
his current hash-puzzles earlier than the second miner completes his own. The second miner mining
probability is My = 1 — Mj. It is noteworthy that expression holds for every k > 1.

Ezxample 4. Let us assume a scenario with two miners, where each of them divides his hashing power
equally between the stages. Moreover, let all the & > 1 stages be equally difficult, and let hgypy > 0
be the network hashing power. In Fig. 2] and Fig. [3] the graphs plot the mining probability of the
first miner, computed with both the negative binomial expression and the closed-form expression.
The two graphs are identical, confirming that, under the considered assumptions, the two methods
for computing the mining probability are equivalent. The horizontal axis represents the share of the
network hashing power of the first miner, while the vertical axis shows his mining probability. Each
colored line depicts the probability over a certain number & of stages. The dotted black line indicates
the Bitcoin mining probability (i.e., & = 1). The intersection of the colored lines with the dotted
black line indicates the point where they have the same mining probability, i.e., the point (0.5,0.5).
The colored lines have rotational symmetry around (0.5,0.5). Furthermore, as the number of stages
grows, the slope of the curves of the mining probabilities gets steeper. Finally, as the number of
stages increases, the mining probability of a miner holding a low or a high share of the network
hashing power becomes negligible or overwhelming, respectively.

7 Security of multi-stage PoWs

Single-stage PoWs security requires that no entity should gather more than 50% of the hashing
power, since such an entity would become the centralized owner of the blockchain consensus protocol
[43], and he could carry out several attacks, which undermine the trust of the system [3|. For instance,
he could revert and rewrite the blockchain history [3|, and be successful in double-spending attacks.
Other well-known attacks, which do not require the 50% of the hashing power are, to name a few:
block withholding attacks |7, |54] and selfish mining [19].

Regarding multi-stage PoWs, in Subsections and we present a Selfish mining attack and
a Selfish Stage- Withholding attack. We consider a general sequential mining multi-stage PoW, i.e.,
blocks are mined one after the otheIE Moreover, for the sake of simplicity and generality, in our
13 We do not consider the pipeline-like architecture since, as already discussed in Section [3| a pipeline-like mining

architecture is not easily implementable. Indeed, stage mining is a stochastic process, and synchronizing the pipeline
architecture precisely between multiple phases is extremely difficult.
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Fig. 2: Mining probability computed with the nega- Fig. 3: Mining probability computed with the closed
tive binomial expression. form expression

analysis, stage s, with 1 < s < k — 1, of the PoW of block B;.x, with ¢ > 0, only requires the
output of stage s — 1 as input. In other words, compared to the PoW model of Section [3] the value
bdigest; s is not required as input.

7.1 Selfish mining

What is the idea behind Selfish mining in Bitcoin? A clever miner or a mining pool, with enough
hashing power, may increase the rewards they expect from block mining, by adaptively withholding
and releasing the mined blocks to the rest of the network at the right time [19]. Indeed, the network
nodes follow the standard Bitcoin protocol, and any newly mined block is publicly released, as
soon as the miner completes the PoW. These clever miners, also known as selfish miners, by not
immediately publishing the blocks they mine, attempt to create their own private chain, that forks
from the last mined block of the public chain. In such a way, they mine new blocks on top of their
private chain, while the rest of the network nodes mine on top of the public chain. Since to resolve
a fork the network nodes pick the longest valid chain in their respective local chains |3, 17|, selfish
miners exploit this feature and reveal the blocks in their private chain at whatever moment they
like. Once their private chain is publicly revealed, and turns out to be the longest valid chain, then
the rest of the network nodes immediately discard the current public blocks, and replace them with
the blocks just revealed. As a consequence, the selfish miners receive all the block rewards for these
blocks and, at the same time, all the work done by the other nodes is wasted.

Selfish mining on sequential mining multi-stage PoWs. Assume that the longest valid chain rule is used
to resolve forka@. Let the network miners be divided into two groups. The first is a selfish pool,
composed of selfish miners, who collaboratively mine hash-puzzles of shared blocks on the private
chain. The second is an honest pool, containing the rest of the network miners, who collaboratively
mine hash-puzzles of shared blocks on the public chain. As for pooled mining in single-stage PoWs,
both pools have a pool manager, and any other pool member works following his directives. Each
pool member receives a share of each reward, proportionally to his contribution, for the blocks that
the pool has mined. The selfish pool only needs to “find a block”, i.e., complete the PoW of a block,
ahead of the honest pool to launch the attack.

If such a block is found, the selfish pool might keep it private, and publish it at the most advan-
tageous time. In the meantime, the selfish pool starts mining the second private block, while the

1 Tn [22][30] Sarkar did not explicitly define a rule to resolve forks.



24 D’Arco et al.

honest pool is still working on the previous block. The selfish pool aims at maximizing both its ex-
pected reward from block mining and the honest-pool work wastage, by extending the selfish branch
as much as possible. Algorithm [T] describes the selfish mining strategy. The algorithm highlights the
three events that happen and affect the public and the private chains:

1. the selfish pool completes a PoW. The two possible outcomes, based on the number 7 of still
unpublished blocks in the private chain, including the block just mined, are:

(a) if n = 1 and the honest pool is currently working on its last hash-puzzle, then the selfish
pool releases the mined block immediately, to avoid being caught up by the honest pool.
This way, the selfish pool gets the block reward, while the honest pool discards its work on
the current PoW. Then, both pools start mining the next block, on top of the published one.
See Fig. [4

(b) in every other case, the selfish pool keeps the block private and starts mining the next private
block on top of it.

__________________________________

Fig. 4: Event 1.(a): The already completed stages are identified by a light blue background. Solid-border rectangles
depict published stages and blocks. Dashed rectangles depict unpublished blocks and stages. The selfish pool mines
the first unpublished block, i.e., n = 1, while the honest pool is working on the last hash-puzzle of its PoW. The
selfish pool publishes immediately the mined block.

2. the honest pool completes its second-last hash-puzzle and is going to start the last one, bringing
it closer to find a block. The possible outcomes, based on the number 7 of still unpublished
blocks in the private chain, are:

(a) if n = 0, then the pool that completes its current PoW earlier than the other pool, mines
and publishes the block, thereby obtaining the block reward and wasting the work of the
other pool. Then, both pools start mining a new block, on top of the published onelﬂ

(b) if n = 1, then the selfish pool releases the private block immediately, to avoid being caught
up by the honest pool. Hence, the selfish pool gets the block reward, while the honest pool
discards its work on its current PoW. Moreover, the selfish branch now is the longest valid
public branch. As a consequence, the honest blocks become orphan. Then, the honest pool
starts mining a new block on top of the public chain. See Fig. [f]

(c) if n > 2, both pools keep working on their respective PoWs.

3. the honest pool completes a PoW, and the number of unpublished blocks is 7 > 2. The honest
pool appends the block to the public chain, and starts mining the next block on top of it. The
selfish pool publishes its first unpublished block. Since the selfish block will be in the longest
valid chain, the selfish pool will eventually get the block reward, while the work of the honest
pool will be wasted. See Fig. [0]

5 The case in which the selfish pool is the winner is identical to Event 1.(a).
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Algorithm 1 Selfish mining attack on sequential mining

1: on Init:
2: public chain < publicly known blocks
3: private chain < public chain
4: unpublishedBlocksNo < 0
5: both pools mine at the head of the public chain
6: Repeat forever:
7 on selfish pool completed k hash-puzzles and found a block:
8: unpublishedBlocksNo + unpublishedBlocksNo + 1
9: if unpublishedBlocksNo = 1 and honest pool has completed k£ — 1 hash-puzzles in its PoW then
10: unpublishedBlocksNo < 0 > Immediately publish the block; the block becomes the latest block in the
public chain
11: discard the k — 1 hash-puzzles found by the honest pool
12: private chain < public chain > the attack is reset
13: both pools mine at the head of the public chain
14: else
15: the selfish pool mines at the head of the private chain
16: on honest pool completed k£ — 1 hash-puzzles, and going to find a block:
17: if unpublishedBlocksNo = 0 then
18: if selfish pool first completes its PoW then
19: publish the block > the block becomes the latest block in the public chain
20: discard the k — 1 hash-puzzles completed by the honest pool
21: else if honest pool first completes its PoW then
22: publish the block > the block becomes the latest block in the public chain
23: discard the hash-puzzles completed by the selfish pool
24: private chain <+ public chain > the attack is reset
25: both pools mine at the head of the public chain
26: else if unpublishedBlocksNo = 1 then
27: The selfish pool publishes the unpublished block
28: unpublishedBlocksNo < 0
29: discard the k — 1 hash-puzzles found by the honest pool
30: public chain <« private chain > the selfish branch is the longest valid public branch in the
blockchain; the honest blocks become orphan
31: both pools mine at the head of the public chain
32: else
33: continue normally > unpublishedBlocksNo > 2
34: on honest pool completed k£ hash-puzzles and found a block: > unpublishedBlocksNo > 2
35: append the block to the public chain > the block becomes the latest block in the public chain
36: the honest pool mines at the head of the public chain
37: The selfish pool publishes the first unpublished block
38: unpublishedBlocksNo < unpublishedBlocksNo - 1

39:
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Fig.5: Event 2.(b): The honest pool completes its second-last hash-puzzle on honest block number 3, while the
private chain already has n = 1 unpublished block (i.e., private block number 3). The selfish pool publishes it
immediately. The selfish branch now is the longest valid public branch in the blockchain, while the blocks of the
honest chain become orphan.
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Fig. 6: Event 3. The honest pool mines a block and starts mining the next block on top of it. The private chain
has n = 2 unpublished blocks, and the selfish pool publishes the first of them (i.e., block number 2). Eventually,
the selfish block number 2 will be in the longest valid chain, while the honest block number 2 will become orphan.
Therefore, the selfish pool gets the block reward.

Analysis. Along the same lines of [19], the selfish pool behavior has been modeled as a state machine
in Fig. [} The states represent the lead of the selfish pool, that is, the number of still unpublished
blocks in the private chain. State 0 is the state in which the public and private branches contain
the same blocks. The transitions in the figure correspond to events triggered either by the selfish
pool or by the honest pool. Let us first describe three events that can trigger state transitions in
the state machine:

1.

When the machine current state is s = 0, with probability M, the machine moves forward to
state 1, and with probability My + M, it loops in state 0, such that M, + M, + M. = 1. M, is
the probability that the selfish pool mines a block while the honest pool has completed at most
k — 2 stages of a block. The selfish pool keeps the block private, and the machine moves forward
to state 1. The probability M, + M, addresses two different events:

(a) with probability M, the honest pool mines a block earlier than the selfish pool does;

(b) with probability M, the selfish pool mines a block while the honest pool has completed
exactly k — 1 stages.

Since in case (b) the selfish pool is only one stage ahead of the honest pool, it immediately

publishes the block to avoid being caught up by the honest pool, letting the machine status

remain unchanged.

. When the machine current state is s = 1, with probability M, the selfish pool completes its

current PoW earlier than the honest pool completes its second-last hash-puzzle. The selfish pool
keeps the block private and increases its lead to 2. With probability M;, the opposite happens:
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the selfish pool immediately publishes its unpublished block to avoid being caught up by the
honest pool, decreasing its lead to 0.

3. When the machine current state is s > 2, with probability M, the selfish pool completes its
current PoW earlier than the honest pool does. It keeps the block private, and increases its
lead to s + 1. With probability M, the opposite happens: the selfish pool publishes its first
unpublished block and decreases its lead to s — 1.

° Ma W‘
1 :
' Mo Mo °

My, + Mc

Fig. 7: Selfish mining state machine

The probabilities M, My, and M. have to be determined based on the current machine status,
and the remaining number of hash-puzzles to be solved by the two pools, to complete their respective
PoWs.

Let all the stages have the same difficulty d. Let h; and ho be the hashing powers of the selfish
and the honest pool on every stage, respectively. Moreover, let p; = ﬁ be the probability that
the selfish pool completes its current stage earlier than the honest pool completes its own. Then, to

compute the values of M,, My, and M., consider the following events:

1. The machine is in state 0. It has just started, or has looped in state 0, or returned to state
0 from state 1. If it has just started or has looped in state 0, both the selfish and the honest
pool need to solve k sequential hash-puzzles to complete a PoW. If it has just returned from
state 1 to state 0, then the selfish pool is already working on the stagese-th hash-puzzle, with
stagese; € {0, ..., k—1} of its current PoW, and need to find R = k — stagese; more hash-puzzles
to complete it. Note that, in the other two cases stages; = 0. In detail, M, is the probability
that the selfish pool solves R hash-puzzles, while the honest pool has solved at most k — 2 hash-
puzzles. The selfish pool keeps the mined block private, thereby changing the machine status to
state 1. More formally, let N be a random variable denoting the number n of stages found by the
honest pool (i.e., failures), while the selfish pool completed the R-th stage (i.e., R-th success),
with success probability p;. It assumes values according to a negative binomial distribution.
Therefore, M, is given by P(N < k — 2). That is:

2 <n+R—1

R I SR (17)

n=0

My, is the probability that the selfish pool solves R hash-puzzles, while the honest pool has solved
k — 1 stages. In this case, the selfish pool releases the found block immediately, and the machine
loops in state 0. That is:
k+R—2\ g k—1
M, = 1— 1

o= (e (18)
M. =1— M, — My is the probability that the honest pool completes its PoW earlier than the
selfish pool, causing the machine to loop in state 0.
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2. The machine has just moved forward to state i, such that ¢ > 1. In this case, the selfish pool
has completed its PoW, keeping the block private. The new value of M, is computed based on
the number stagep,, of hash-puzzles already completed by the honest pool in its current PoW,
with stagepo, € {0,1,...,k — 1}, when the state transition was triggered. In detail, M, is the
probability that the selfish pool solves k more hash-puzzles, mining another block and changing
the machine status to state i + 1, earlier than the honest pool finds R = k — stagep,, hash-
puzzles and completes its current POWIE More formally, let N be a random variable denoting
the number n of stages found by the honest pool (i.e., failures), while the selfish pool completed
the k-th stage (i.e., k-th success), with success probability p;. It assumes values according to a
negative binomial distribution. Therefore, M, is given by P(N < k — 2). That is:

Rg (”*k >p’f(1 )" (19)

With probability M, = 1 — M, the opposite happens, forcing the selfish pool to release its first
unpublished block, and to change the machine status to state ¢ — 1.

3. The machine has just moved back to state ¢, such that ¢ > 1. In this case, the honest pool had
completed the second-last puzzle of its PoW, and the selfish pool released the first unpublished
block in the private chain. Consequently, the machine moved back to state ¢ from the previous
state ¢ + 1. The new value of M, depends on the number stage,, of hash-puzzles the selfish
pool has already completed in its current PoW, with stages; € {0,1,...,k — 1}, when the
state transition was triggered. In detail, M, is the probability that the selfish pool solves R =
k — stagese; hash-puzzles of its PoW, and changes the machine status to state ¢ + 1 earlier than
the honest pool solves k (resp. k — 1 if ¢ = 1) hash-puzzles. More formally, let N be a random
variable denoting the number n of stages found by the honest pool (i.e., failures), while the selfish
pool completed the R-th stage (i.e., R-th success), with success probability p;. It assumes values
according to a negative binomial distribution. Therefore, if i > 2, M, is given by P(N < k—1).
That is:

Ma Z(THR )pf(l—pl)” (20)

Instead, with ¢ = 1 the sum is computed for every n such that 0 <n <k — 2.
With probability M, = 1 — M, the opposite happens, causing the selfish pool to release its first
unpublished block, and the machine status to move back to state i — 1.

We must now wonder how to measure the R value. To answer this question, we need to know how
many hash-puzzles the loser pool had already solved when the last state transition was triggered,
i.e., the values of stagepo, or stagese. Let us explain how to proceed with an example. Assume the
machine starts, and the first event that occurs is that the selfish pool completes a PoW earlier than
the honest pool completes the second-last hash-puzzles of a PoW, with probability M, computed
according to item 1. Thereby, the machine moves to state 1. At this moment, the selfish pool has
mined a block, and starts the PoW of the next one. Hence, it needs to solve k more hash-puzzles
to complete the next block. In the meantime, the honest pool is still working on the stagepo,-th
stage, where stagepon, € {0,...,k — 2}, of its first PoW. The new M, and M, values can now be
computed according to expression . But we need to know the value of stagepo,. Actually, we can
compute the expected value of the random variable N, and use it as an approximation for stagey,.

16 Resp. R = k — stagenon — 1 hash-puzzles and completes the second-last hash-puzzle in its current PoW if ¢ = 1.
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Precisely:
2 P(N=nnN<k-2)
E[N|N<k=2=) n P(N <k —2)
n=0

Notice that:
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— P(N <k—-2) = I(p1;k,k — 1), where I(;,,) is the Regularized beta function
Therefore, it holds that
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It easy to check that:
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Using the above equality, and due to the distributive property of multiplication over addition, it

follows that:
n+k—1 k2 n+k—1
< )p’f(l—m)":kp’fz:( i >(1—p1)”-
n=1

Setting n =z + 1, we get:
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(setting k = s — 1, and using a Computer Algebra System)

~ (s 1)(1— p1)p 1Z<x+s—1> L= py)®

(s = D= p)pi (1= (5= (7780~ piss - 3,9))

pi
(setting s =k + 1)
k(1=p) (1= (k=2 ("} )80 - prik = 2.k +1))

b1




30 D’Arco et al.

Therefore,

k(1 =p1) (1= = 2)C5D)B( = prik— 2,k + 1))

<k—9 =
BININ < k=2] pil(p;k, k—1) ’

where S(1 —p1;k—2,k+1) is the incomplete beta function. For cases 1. and 3., the expected value
of N and, consequently, of R, can be computed in a similar way.

Experimental results. Let & > 2 be the number of stages in each PoW. To evaluate the profitability
of the attack, let the selfish pool share and the honest pool share of the network hashing power be
a < 1/2 and =1 — a, respectively. Let us assume that both pools divide their respective hashing
power equally between stages, i.e., hsey = ¢ and hpon = %, respectively. The probability that the

selfish pool finds a new stage in its current PoW earlier than the honest pool is pse; = hlh#

With probability ppen, = h?% = [ the opposite happens. Without loss of generality, let the block
reward for mining every block be 1, and let rewardgse and rewardp,, count the number of blocks

in the public chain mined by the selfish and the honest pool, respectively.

Experimentally, we evaluated the profitability of the attack by running the state machine for
all a in the set {0.001,0.002,...,0.499}, and k in the set {2,7,10,15,25}. Each execution simu-
lated 100000 state machine transitions. Fig. [§] shows the selfish pool relative reward, defined by
relative Rewardse rewar;:::}i:iﬁla a—- On the graph, the horizontal axis represents o, while
the vertical axis represents relative Rewardg,. The dotted lines represent the expected value of
relative Rewardg,; when the selfish pool does not attack and mines honestly insteadlzl In this case,
the expected value of relative Rewardse; is equivalent to the mining probability of the selfish pool.
Therefore, the attack turns out to be profitable if relative Rewards; is greater than the mining
probability of the selfish pool. As the figure shows, selfish mining is unprofitable for a low hash
powered selfish pool. With two stages, it becomes profitable, as the share of the network hashing
power held by the selfish pool rises to roughly 0.2. With higher numbers of stages, the value of « for
which the attack is profitable is greater. Independently from k, as the share of the network hashing
power approaches to 0.5, the attack profitability is boosted. The pseudocode of the algorithm, used
to evaluate the profitability of the attack, is provided in Appendix [A]

7.2 Selfish Stage-Withholding

In the previous subsection, we have seen that the Selfish Mining profitability depends on the share
of the network hashing power held by the selfish pool. If the share is low, then the selfish pool
mining probability is almost zero, and the profitability of the attack is not noteworthy either. What
can be done in this case? A possible strategy is Stage-Withholding.

A stage-withholder in a multi-stage PoW is a miner behaving like the single-stage Block-
Withholder in the work of Dong et al. [55]. A block-withholder joins a pool, and acts as any
other pool member, trying to mine a new block, under the directives of the pool manager, and
receiving in exchange a share of the block rewards, for every block that the pool has mined. The
only difference with the other pool members is that, whenever the block-withholder finds a block,
he does not publish it. Instead, he discards it, undermining the overall earnings of the victim pool
[7, [54]. Similarly, a stage-withholder joins a pool, and whenever completes a stage hash-puzzle, he

17 The graph shows a dotted line for each stage number.
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Fig. 8: Selfish Mining on multi-stage PoWs

drops it without informing the pool administrator or any other miner. On the other hand, for every
other block mined by the pool, he obtains his share of each stage reward.

In Selfish Stage-Withholding, two attacks on a general multi-stage PoW, implemented through
sequential mining, are executed jointly: selfish mining and stage-withholding. The selfish mining
attack is performed as in Subsection . On the other hand, however, a share 7 € (0,1) of the
selfish pool hashing power is devoted to the Stage-Withholding attack in the honest pool. The
Stage-Withholding attack might increase the selfish pool reward, especially when the selfish mining
attack is unprofitable, due to a low network hashing share owned by the selfish pool. In such a case,
the honest pool mines the majority of the blocks, and a Selfish Stage Withholder could increase his
expected reward by “stealing” a share of the honest pool rewards.

Let now analyze the Selfish Stage-Withholding profitability more in details. Let av < 1/2 be the
share of the network hashing power held by the selfish pool, and let 7 be a fraction of his power,
devoted to the stage withholding attack, such that 0 < 7 < 1. Thus, the Stage-Withholding network
hashing power share would be 7a. In this case, if the share of the network hashing power held by
the honest miners is § = 1 — «, then it would sum up to S + 7. However, the Ta stage withholder
hashing power is useless, since the miner only pretends to contribute block mining.

The probability that the selfish pool finds a new stage in its current PoW earlier than the honest

: _ (01« . . B 8 .
pool is pge; = =7 ath" With probability pron = =9 at3 the opposite happens.

Without loss of generality, let the block reward for mining every block be 1, and let rewardge
and rewardp,, count the number of blocks in the public chain mined by the selfish and the honest
pool, respectively. Considering that the expected reward for the stage-withholder is computed based
on its fake contributions in the honest pool, that is, reward,,; = 61% x rewardpon, then the selfish
stage-withholder earnings would be, accordingly, the sum of Selfish mining and Stage-Withholding
revenues rewardge]—wit = rewardyi + rewardgey.

Experimentally, we evaluated the profitability of the attack by running the state machine for all
« in the set {0.001,0.002, ...,0.499}, 7 in the set {0.1,0.3,0.5,0.7,0.9}, and with £k = 2 or k = 15.
Each execution simulated 100000 state machine transitions. Figs. [0 and [I0] depict the revenues
of the Selfish Stage-Withholding attack with 2 and 15, stages, respectively. The horizontal axis
represents the share of the network hashing power a belonging to the selfish pool, while the vertical
axis represents its relative reward, computed as:

rewardgel—wit

relative Rewardge)—yi = :
rewardsel—wit + (rewardpon, — rewardy;t)
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As before, the dotted lines represent the expected value of relative Rewardgse—qit, when the selfish
stage withholder does not attack and mines honestly instead. In this case, the expected value of
relative Rewardge_in 18 equivalent to the mining probability of the selfish stage withholder.

For a low-powered selfish pool, the Selfish Stage-Withholding solid lines have the highest rev-
enues, until they intersect with the Selfish mining line: from that point on, Selfish mining is more
profitable than Selfish Stage-Withholding. Therefore, based on the share of the network hashing
power the attacker holds, he can choose between the Selfish Mining or Selfish Stage-Withholding
strategies to launch the most profitable attack. On the other hand, Fig. [10]shows that Selfish Stage-
Withholding is not always profitable compared to honest mining. Indeed, the profitability of the
attack depends on the share of the network hashing power held by the selfish pool, the value of 7,
and the number of stages involved in the PoWs.
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7.3 Previous works on multi-stage PoW Selfish mining

Chang et al. presented a selfish mining attack on the multi-stage PoW proposed by Sarkar [56].
Their attacking scenario is similar to ours since it consists of two pools: a selfish pool, whose miners
collaborate to carry on the attack, and an honest pool, in which the rest of the network miners
collaborate. However, unlike in Sarkar’s original protocol, the authors assumed that if the selfish
pool publishes the solutions to a number of stages of the PoW of a not-mined-yet block greater
than the number of hash-puzzles already completed by the honest pool on that block, then the
honest pool discards its work and mines on top of the selfish stages. In contrast, Sarkar’s protocol
incentivized a cooperative behavior, but never explicitly forced a miner to discard his partial work@
Indeed, in theory, competing miners or pipelines can also continue to mine individually against each
other until a block is fully mined. Given the mentioned assumptions, the authors analyzed three
distinct honest pool mining techniques: “pipeline mining”, “parallel mining”, and “sequential mining”.
The selfish pool adaptively chooses its mining strategy to maximize its expected reward from the
attack, modeling its attack on the share of network hashing power held by the selfish pool and on
the honest pool mining strategy. The authors showed that the attack is profitable in any mining
strategy adopted by the honest pool.

18 « Note that the formation of the groups is mot imposed extraneously. The cooperative process of the multi-stage
maning will itself incentivize miners to work on individual stages, thus leading to the formation of the groups” [30].
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Let us give a closer look at the attack on “sequential mining”, which is of interest to us, due to
the similarities with our attack proposed in Subsection [7.1] In “sequential mining”, all honest pool
miners work on a single hash-puzzle of a PoW at a time, and move to the PoW of the next block
only once the present block is done. Let k£ be the number of stages, and let the shares of the network
hashing power share held by the honest pool and the selfish pool be  and «, respectively (with
a =1 — ). The authors proved that, if 5/a < k, then the attack is profitable with l%i—l <a< %
In contrast, if 3/« > k, then the attack is profitable with W <a< %

There are two main conceptual differences between the attacks proposed in [56] and our attack.

First, in [56], the authors used entirely Sarkar’s model, in which, stage s of the PoW of block B;
requires two inputs: the output of stage s —1 of block B, (if s > 1) and bdigest; , ,. In contrast, our
attack assumed a more general “sequential mining” multi-stage PoW architecture, in which stage
s = 1 of the PoW of block B, ; only requires the output of stage s — 1 as input. In our general
architecture, the PoW of block B, can start only after block B;_1,j has been mined. In contrast,
in Sarkar’s model, stage 0 of block B;,j can start much earlier; indeed, it can start right after block
B; has been mined and bdigest, is available. Given the different considered settings, the profitability
of the attack in [56] is evaluated with respect to the share of the network hashing power held by
the selfish pool. In contrast, the profitability of our attack is evaluated with respect to the selfish
pool mining probability.
Sarkar also presented himself a possible selfish mining attack on his multi-stage PoW in the latest
version of his work [30]. He considered a specific selfish mining strategy, in which the first & — 1
hash-puzzles of every PoW are mined exclusively by the honest pool, and the selfish pool only mines,
against the honest pool, the last hash-puzzle of every PoW. If the selfish pool succeeds in completing
the last hash-puzzle of the PoW of a block, say block B;.x, for a ¢ > 0, then it initially keeps the
block private to perform the Selfish mining attack. The attack exploits the dependency between the
PoWs of near blocks. Indeed, stage k — 1 of the PoW of block B; 11 requires bdigest;, as input.
The selfish pool may exploit the private knowledge of bdigest; to start the stage k — 1 of the
PoW of block B;114 earlier than the honest pool, thereby increasing its chances to complete that
hash-puzzle before everyone else. This way, the selfish pool receives the stage reward for stage k — 1
of block B;ik, and, if it is successful in completing stage k — 1 of block B;11; before the honest
pool does, it can repeat the attack on block B;, 4k as well.

8 Conclusion

We have analyzed how a multi-stage PoW affects block mining, to provide a first step in evaluat-
ing whether a multi-stage PoW can be useful and worthwhile to be practically implemented. We
have obtained a closed-form expression for the mining probability, which is valid, under common
assumptions, in permissionless blockchain protocols whose PoW is composed of &k > 1 sequential
hash-puzzles. We have proved that if & > 1, then the share of the network hashing power held
by a miner and his mining probability are not necessarily equal. This awareness might favor a
clever miner, who may divide his hashing power between the k hash-puzzles optimally, and obtain
a mining probability value greater than the share of the network hashing power he holds. Such a
possibility also opens up potential fairness and decentralization issues in mining. Afterwards, we
have analyzed the security of multi-stage PoWs, with respect to the Selfish mining and the Selfish
Stage-Withholding strategies. We have shown that Selfish mining can be successful and profitable
depending on the share of the network hashing power held by the selfish pool, and on the number
of stages of every PoW. Moreover, we have shown that Selfish Stage-Withholding is a complemen-
tary strategy to Selfish mining, which can increase the selfish miner profitability when he controls
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a small share of the network hashing power. Our findings clearly point out that future designs of
multi-stage PoWs deserve further and careful investigations. Indeed, if from one hand it seems to be
a natural and appealing alternative to single-hash PoWs, on the other hand, as our analysis shows,
some subtle and unexpected issues need to be dealt with.
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A Selfish Mining Profitability

In the following, we present the algorithm used to simulate the state machine and evaluate the
profitability of the selfish mining attack on a general sequential mining multi-stage PoW. The
algorithm models the state machine presented in Subsection It takes four inputs: the number k
of hash-puzzles of every PoW, the number transitionsNo of state transitions that must be executed
until the simulation ends, and the shares of the stage hashing powers, hge; and hp,oy,, of the selfish and
the honest pool, respectively. We remark that, as defined in Subsection the k stage difficulties
are identical. We computed the relative Reward,.; of the selfish pool as the ratio between the blocks
it mined and the total number of blocks in the longest chain.

In the pseudocode, we indicate by N (z,p) the random variable counting the number n of stages
completed by the loser pool (failures) n € {0,1,...}, occurred when the z-th stage is completed by
the winning pool (z-th success) such that > 1. The parameter p denotes the success probability.
As discussed before, the random variable takes values according to a negative binomial distribution.

Note that, in general, the expected number of stages completed by a losing pool is decimal. It
is randomly rounded (with floor or ceil) to the nearest integer, with a probability determined using

randomized roundinﬂ

19 The pseudocode for the selfish stage-withholding attack is similar. The source code of both Selfish
mining and Selfish Stage-Withholding attacks is available on GitHub: https://github.com/ZAnsaroudi/
Security Attacks-on- Multi-stage- Proot-of-work.


https://github.com/ZAnsaroudi/SecurityAttacks-on-Multi-stage-Proof-of-work
https://github.com/ZAnsaroudi/SecurityAttacks-on-Multi-stage-Proof-of-work
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Algorithm 2 Selfish Relative Reward Computation (Part 1)

1: procedure SELFISHRELATIVEREWARD(k, transitionsNo hsei, hhon)

2:
3:

11:
12:

13:
14:

15:
16:

17:

18:

19:
20:

21:

22:
23:

on Init:

Pstage_sel hw,h-iﬁ /* Prob. the selfish pool finds a new stage earlier than the honest

pool */

] hp
N LOTL
Pstage_hon Rsei+hnon

selfish pool */

/* Prob. the honest pool finds a new stage earlier than the

rewardsel — 0 /* Number of blocks in the longest chain that have been mined by the
selfish pool */

rewardpon 4 0 /* Number of blocks in the longest chain that have been mined by the
honest pool */

relativeRewardse; < 0

previousState < 0

currentState < 0

stageset 4 0 /* Expected number of stages solved by the selfish pool when it looses a
mining race */

stagenon, < 0 /* Expected number of stages solved by the honest pool when it looses a
mining race */

R+ k

transitionCounter < 0

unpublishedBlocksNo < 0 /* Number of still unpublished blocks in the private chain*/

while transitionCounter < transitionsNo do

if currentState = 0 then

/* Item 1: The machine has either just started, looped or returned to state 0 from
state 1. The selfish and the honest pool have to complete R and k stages to trigger a
state transition, respectively. */

compute Mg, My, and M. according to expressions (17) and (18]
/* Determine the next state transition */

with probability M,:
/* The selfish pool completed its R-th stage. In the meantime the honest pool has
completed at most k — 2 stages. The selfish pool keeps the block private. The state
machine will transition to state 1. */
unpublished BlocksN o < unpublishedBlocksNo + 1
stagenon < E[N(R,Pstage_set) | N(R, Pstage set) < k —2] /* The honest pool has completed
at most k — 2 stages in the meantime. */
R < k — stagénon — 1 /* The honest pool needs to find k — stagenon — 1 more stages
to complete the second-last hash-puzzle in its current PoW and trigger a state
transition. */
previousState < currentState
currentState <— 1 /* The machine moves forward to state 1. */




Multi-stage Proof-of-Works: Properties and Vulnerabilities 39

Algorithm 2 Selfish Relative Reward Computation (Part 2)

24

25:

26:

27:

28:

29:
30:

31:

32:

33:
34:

35:
36:

37:
38:

39:
40:
41:

or with probability My:

/* The selfish pool completed its R-th stage while the honest pool has completed ex-
actly k — 1 stages. The selfish pool publishes its found block, while the honest pool
discards its PoW. The state machine will loop in state 0. */

rewardse; <— rewardse;+1 /* The selfish pool has just published its mined block. */
R <+ k /* The selfish pool will need to find R < k more stages to complete its
current PoW and trigger a new state transition. */

previousState < currentState

or with probability M.:

/* The honest pool has been faster than the selfish pool. The honest pool gets the
block reward, while the selfish pool discards its PoW. The state machine will loop
in state 0. */

rewardpon < Tewardpon + 1 /* The honest pool has just published its mined block.
*/

R < k /* The selfish pool discards its work. It will need to find R < k stages
to trigger a state transition. */

previousState < currentState

else if currentState — previousState = 1 then
/* Item 2: The machine has just moved forward to state currentState > 1. The selfish
and the honest pool have to complete k£ and R stages to trigger a state transition,
respectively. */

compute M, and M, according to expression

/* Determine the next state transition */
with probability M,:
/* The selfish pool has been faster than the honest pool and will keep the mined
block private. The state machine will transition to state currentState+ 1. */
unpublished BlocksN o < unpublishedBlocksNo + 1
stagenon + E[N(k,pstage set) | N(k,Dstage set) < R—1] /* The honest pool has completed
at most R—1 stages in the meantime. */
if currentState = 1 then
R + R— stagepon +1 /* The honest pool needs to find R — stagepon + 1 more stages
to complete its current PoW and trigger a state transition. */
else currentState > 2
R < R — stagenon /* The honest pool needs to find R — stagepon more stages to
complete its current PoW and trigger a state transition. */
end if
previousState < currentState
currentState < currentState+1 /* The machine moves forward to state currentState+1.

*/
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Algorithm 2 Selfish Relative Reward Computation (Part 3)

42:

43:

44:
45:

46:

47:
48:

49:

50:
51:

52:
53:
54:

59:
56:

57:
58:

59:
60:

/* Determine the next state transition */

or with probability My:

/* The honest pool has been faster than the selfish pool. The state machine will

transition to state currentState —1. */
rewardse; <— rewardse;+1 /* The selfish pool publishes the first unpublished block.
*/
unpublished BlocksN o < unpublishedBlocksNo — 1
stageser < E[N (R, pstage hon)|N(R,Pstage hon) < k—1] /* The selfish pool has completed
at most k — 1 stages in the meantime. */
R <+ k — stageset /* The selfish pool needs to find k — stagese; more stages to
complete its current PoW and trigger a state transition. */
previousState < currentState
/*currentState < currentState—1 The machine moves back to state currentState—1. */

else if currentState — previousState = —1 then
/* Item 3: The machine has just moved back to state currentState > 1. The selfish pool
has to complete R stages to trigger a state transition. If currentState = 1 (resp.

currentState > 2), then the honest pool has to complete k—1 (resp. k) stages to trigger
a state transition. */
compute M, and M, according to expression (20)

with probability M,:
/* The selfish pool has been faster than the honest pool and will keep the mined
block private. The state machine will transition to state currentState+ 1. */
unpublished BlocksN o < unpublishedBlocksNo + 1
if currentState = 1 then
stagenon < E[N(R,pPstage set) | N(R,Dstage_set) < k — 2] /* The honest pool has
completed at most k — 2 stages in the meantime. */
else/* currentState > 2 */
stagenon < E[N(R,Pstage set) | N(R,Pstage set) < k — 1] /* The honest pool has
completed at most k — 1 stages in the meantime. */
end if
R <+ k — stagenon /* The honest pool needs to find k — stagepon more stages to
complete its current PoW and trigger a state transition. */
previousState < currentState
currentState < currentState+1 /* The machine moves forward to state currentState+1.

*/
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Algorithm 2 Selfish Relative Reward Computation (Part 4)

61:

62:

63:
64:
65:

66:
67:

68:
69:

70:
71:
72:
73:
74:

75:
76:

77
78:

or with probability My:

/* The honest pool has been faster than the selfish pool. The state machine will

transition to state currentState —1. */

rewardse; <— rewardse; + 1 /*The selfish pool publishes the first unpublished block.
The block published by the selfish pool and the block just mined by the honest
pool have the same block height. Since only the selfish block will be in the

longest chain in the long-term, the selfish pool gets the reward.*/
unpublished BlocksN o < unpublishedBlocksNo — 1
if currentState = 1 then

stagesel < E[N(k —1,pstage_non) | N(k —1,Pstage_hon) < R—1] /* The selfish pool has

completed at most R — 1 stages in the meantime. */
else/* currentState > 2 */

stageser < E[N(k,Dstage hon) | N(K,Dstage non) < R — 1] /* The selfish pool has

completed at most R — 1 stages in the meantime. */
end if

R <+ R — stageset /* The selfish pool needs to find R — stages.; more stages to

complete its current PoW and trigger a state transition. */
previousState < currentState

currentState < currentState — 1 /* The machine moves back to state currentState —1. */

end if
transitionCounter < transitionCounter + 1
end while

The selfish pool publishes all the unpublished BlocksNo unpublished blocks
rewardse; < rewardse; + unpublishedBlocksNo /* The selfish pool has just published
unpublishedBlocksNo blocks. */

. rewardge;
relative Rewardge; < reward.o trewardno

return relative Rewardse;

79: end procedure
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